首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
徐希  刘娟  吴华宗  江文杰 《电化学》2018,(4):319-323
氢能被视为21世纪最具发展潜力的能源.电解水制氢具有诸多优点,如原料来源广泛、操作简便、产品纯度高、无污染,已成为最具有应用前景的方法之一,但其阳极氧析出反应动力学缓慢,严重制约电解水制氢的效率.因此,发展氧析出电催化剂尤为重要.本文利用高温煅烧法制备了硼酸镍纳米棒,长度约为2μm,直径约为200nm.与文献报道的低结晶度或无定型硼酸盐析氧催化剂不同,硼酸镍纳米棒的结晶度较高,并且具有较好的OER催化活性和稳定性.其催化活性可以通过与其他导电材料复合或进一步减小其尺寸等方式提升.  相似文献   

2.
谢文富  邵明飞 《电化学》2022,28(10):22014008
与传统化石能源制氢技术相比,利用可再生能源驱动电解水制氢技术具有绿色可持续和制氢效率高等优势,被认为是目前最具前景的制氢方式。然而, 由于电解水两极反应动力学缓慢、 催化剂稳定性较差, 限制了其大规模发展。此外, 阳极析氧反应存在较高的过电势, 从而导致当前制氢能耗与成本较高, 严重制约了其商业化应用。 为了解决上述问题与挑战,本文对当前发展较为成熟的碱性电解水技术进行了综合讨论与分析。 首先, 对电解水发展历程中的重要节点进行了总结, 便于读者了解该领域。进一步, 从电催化剂、 电极、 反应和系统的角度深入总结了提升电解水制氢性能的有效策略。作者分别介绍了近年来层状双金属氢氧化物基电解水催化剂、电解水制氢耦合氧化反应以及可再生能源驱动的电解水系统的重要研究进展; 同时对结构化催化剂在电解水应用中的构效关系进行了深入分析。最后, 对该领域存在的挑战和未来发展方向进行了展望,希望能为氢能的发展和推广提供一定的思路。  相似文献   

3.
非晶非贵金属催化剂的研究进展及展望   总被引:1,自引:0,他引:1  
近年来电解水产氢作为一种具有前景的制备及储存可再生能源的方法受到了各界的广泛关注.在此过程中,电解水催化剂是提高能源转换效率的关键.优秀的催化剂应具备高催化活性、高稳定性、低成本以及可大规模生产等性质.科研工作者对电解水的两部分反应,即析氢反应以及析氧反应均进行了广泛及深入的研究.目前,贵金属催化剂,如铂基、钌基催化剂的催化活性要高于其他元素催化剂,但由于其价格昂贵,储量较少使得贵金属催化剂无法得到大规模应用,因此发展非贵金属催化剂对绿色能源的发展具有重要意义.一般而言,催化剂的结晶度越高,其催化活性越好,而近年来非晶催化剂以其更高的催化活性位密度也越来越受到人们的重视.同时,非晶催化剂的成分更加灵活,相比晶体催化剂来说非晶催化剂可以在更大范围内对成分进行调节.此外,非晶催化剂的制备通常都在较为温和的反应条件下进行,这也能够降低生成成本,促进其工业化发展.在这篇综述里我们介绍了电解水反应的基本原理,总结了近期非晶析氢、析氧以及双功能催化剂的研究进展.并随后探讨了电解水反应目前的难点并对非晶催化剂的制备进行了展望.  相似文献   

4.
近年来电解水产氢作为一种具有前景的制备及储存可再生能源的方法受到了各界的广泛关注.在此过程中,电解水催化剂是提高能源转换效率的关键.优秀的催化剂应具备高催化活性、高稳定性、低成本以及可大规模生产等性质.科研工作者对电解水的两部分反应,即析氢反应以及析氧反应均进行了广泛及深入的研究.目前,贵金属催化剂,如铂基、钌基催化剂的催化活性要高于其他元素催化剂,但由于其价格昂贵,储量较少使得贵金属催化剂无法得到大规模应用,因此发展非贵金属催化剂对绿色能源的发展具有重要意义.一般而言,催化剂的结晶度越高,其催化活性越好,而近年来非晶催化剂以其更高的催化活性位密度也越来越受到人们的重视.同时,非晶催化剂的成分更加灵活,相比晶体催化剂来说非晶催化剂可以在更大范围内对成分进行调节.此外,非晶催化剂的制备通常都在较为温和的反应条件下进行,这也能够降低生成成本,促进其工业化发展.在这篇综述里我们介绍了电解水反应的基本原理,总结了近期非晶析氢、析氧以及双功能催化剂的研究进展.并随后探讨了电解水反应目前的难点并对非晶催化剂的制备进行了展望.  相似文献   

5.
通过简单的钴铁前躯体热分解法制备了系列一维Co_(1-x)Fe_xO_y(0≤x≤1)多孔纳米材料,并在1 mol·L~(-1) KOH溶液中研究了其电解水析氧催化性能。研究发现不同Fe掺杂量对材料的结构与电解水析氧催化性能有较大的影响,其中16%(n/n)Fe掺杂量的Co_(1-x)Fe_xO_y具有最优的析氧催化性能。在10 m A·cm~(-2)电流密度下其析氧过电位为345 mV,塔菲尔斜率为54 mV·dec~(-1),并表现出优异的析氧稳定性能。廉价、高效的Co_(1-x)Fe_xO_y多孔纳米棒材料有望成为优良的析氧催化剂用于电解水制氢。  相似文献   

6.
氢能具有能量密度高、清洁无污染等优势,被认为是理想的能源,受到越来越多的关注.利用太阳能和风能等可再生能源电解水制氢是一种极具发展前景的可以规模化获取清洁氢气的能源技术,其挑战在于如何降低电能消耗并实现稳定地高速电解制氢.由于电解水阳极析氧反应(OER)涉及四电子转移,动力学过程缓慢,是电解水过程的决速步骤.因此,开发高效、廉价、稳定的OER电催化剂对于推动电解水制氢的应用至关重要.硫族化合物具有良好的导电性,对OER中间体表现出适宜的吸附/脱附能力,是一类高活性的析氧电催化剂.但在析氧反应中硫族化合物会不可避免地发生氧化,导致其结构坍塌,使其性能发生大幅衰减.NiOOH被认为是Ni(OH)2、NiSe和NiS等镍基电催化剂析氧过程中的真实催化活性位点,在析氧反应过程中表现出优异的稳定性.因此,结合硫族化合物的高催化活性和羟基氧化物的高稳定性,将有望获得高效稳定的析氧电催化剂.本文提出了一种选择性硒掺杂的策略,实现了不锈钢基底上NiFe2O4/NiOOH异质结的选择性硒掺杂,获得了硒掺杂浓度可调的NiFe2O4-xSex/NiOOH异质结电催化剂,大幅提升了其电催化析氧性能.采用X射线衍射技术、拉曼光谱、扫描电镜和透射电镜技术等对NiFe2O4/NiOOH异质结的结构、形貌和组分进行了表征.利用X射线光电子能谱和透射电镜的能量色散光谱仪对硒掺杂产物的元素组成和分布进行了分析.结果表明,硒元素仅掺杂到NiFe2O4纳米颗粒中,而NiOOH纳米片骨架保持不变,保证了催化剂在析氧过程的稳定性.NiFe2O4-xSex/NiOOH异质结电极在1 M KOH溶液中表现出较好的析氧性能,达到10和500 mA cm?2电流密度所需要的过电位分别仅为153和259 mV,塔菲尔斜率为22.2 mV dec?1.更重要的是,NiFe2O4-xSex/NiOOH电催化剂的电化学性能稳定性,计时电流测试表明,在10~400 mA cm?2电流密度下可稳定工作.稳定性测试表明,催化剂在100 mA cm?2的电流密度下可稳定工作至少300 h.电催化过程研究表明,选择性硒掺杂提高了界面间电荷输运能力,改善了电极表面的浸润性,优化了活性位点的电子结构,从而大幅提高催化剂的电催化性能.密度泛函理论计算结果表明,硒掺杂会导致NiFe2O4表面晶格发生畸变,显著改善了反应中间体的吸附过程,因此明显降低了析氧反应决速步骤的能垒.本研究结果将为未来探索高效和稳定的电催化剂提供新的研究思路.  相似文献   

7.
为简化电解水催化剂的合成过程和优化电解水操作系统,双功能电解水催化剂的研究,特别是在碱性条件下同时具有优异催化氢析出和氧析出反应性能的双功能电催化剂的研究尤为重要.其中,过渡金属硫化物,特别是CoNi硫化物,被报道有与氢化酶类似的催化活性中心,从而具有优异的催化氢析出和催化氧析出反应性能.虽然有关对过渡金属硫化物的研究很多,但主要集中在具有一维纳米线和二维纳米片形貌结构的过渡金属硫化物.不幸的是,这些形貌结构的过渡金属硫化物在电催化过程中容易聚集和受限于电荷传输能力.三维纳米结构的材料具有较大的比表面积以分布更多的活性位点和拥有良好的电子传输能力,所以,开发三维纳米结构的过渡金属硫化物材料可能是改进其催化电解水性能的一个好途径.本文采用简单的两步水热法,通过硫化合成的CoNi前体得到了长于泡沫镍上的三维百合花状的CoNi_2S_4(CoNi_2S_4/Ni).它只需要54 mV的过电位即可获得10 mA cm~(-2)的催化氢析出反应电流,是最好的碱性催化氢析出反应电极材料之一.它在驱动100 mA cm~(-2)的催化氧析出反应电流时也只需要328 mV的过电位.另外,把CoNi_2S_4/Ni分别作为阴极和阳极组装成双电极碱性水电解槽时,它只需要1.56 V的电压即可获取10 mA cm~(-2)的催化全电解水电流并具有良好的催化全电解水稳定性.扫描电子显微镜、透射电子显微镜和N_2吸脱附曲线测试结果表明,该三维百合花状的CoNi_2S_4/Ni的表面粗糙度高和拥有多孔特性.多孔结构的CoNi_2S_4/Ni可提供更多可接触的催化活性位点,也有利于催化过程中的电解质和生成的气体的扩散与传递.交流阻抗图谱测试结果表明,CoNi_2S_4/Ni具有良好的电子传输能力.另外,不同于前期对尖晶石结构的硫化物AB_2S_4的研究结果,XPS结果表明,CoNi_2S_4/Ni中含有Ni~(б+)和S~(б–)活性物种,表明CoNi_2S_4具有与活性氢化酶类似的活性中心.Ni~(δ+)和S~(δ–)可分别作为氢氧根和质子的接收体,协助促进吸附的水分子的分离,从而提高材料的催化性能.所以,Ni~(δ+)和S~(δ–)活性物种的出现,大比表面积的三维百合花状多孔结构和良好的电荷传输能力等特性集合于CoNi_2S_4/Ni上使得CoNi_2S_4/Ni具有优异的催化氢析出和催化氧析出反应性能.  相似文献   

8.
为简化电解水催化剂的合成过程和优化电解水操作系统, 双功能电解水催化剂的研究, 特别是在碱性条件下同时具有优异催化氢析出和氧析出反应性能的双功能电催化剂的研究尤为重要. 其中, 过渡金属硫化物, 特别是 CoNi 硫化物, 被报道有与氢化酶类似的催化活性中心, 从而具有优异的催化氢析出和催化氧析出反应性能. 虽然有关对过渡金属硫化物的研究很多, 但主要集中在具有一维纳米线和二维纳米片形貌结构的过渡金属硫化物. 不幸的是, 这些形貌结构的过渡金属硫化物在电催化过程中容易聚集和受限于电荷传输能力. 三维纳米结构的材料具有较大的比表面积以分布更多的活性位点和拥有良好的电子传输能力, 所以, 开发三维纳米结构的过渡金属硫化物材料可能是改进其催化电解水性能的一个好途径. 本文采用简单的两步水热法, 通过硫化合成的 CoNi 前体得到了长于泡沫镍上的三维百合花状的 CoNi2S4(Co-Ni2S4/Ni). 它只需要 54 mV 的过电位即可获得 10 mA cm-2的催化氢析出反应电流, 是最好的碱性催化氢析出反应电极材料之一. 它在驱动 100 mA cm-2的催化氧析出反应电流时也只需要 328 mV 的过电位. 另外, 把 CoNi2S4/Ni 分别作为阴极和阳极组装成双电极碱性水电解槽时, 它只需要 1.56 V 的电压即可获取 10 mA cm-2的催化全电解水电流并具有良好的催化全电解水稳定性.扫描电子显微镜、透射电子显微镜和 N2吸脱附曲线测试结果表明, 该三维百合花状的 CoNi2S4/Ni 的表面粗糙度高和拥有多孔特性. 多孔结构的 CoNi2S4/Ni 可提供更多可接触的催化活性位点, 也有利于催化过程中的电解质和生成的气体的扩散与传递. 交流阻抗图谱测试结果表明, CoNi2S4/Ni 具有良好的电子传输能力. 另外, 不同于前期对尖晶石结构的硫化物 AB2S4的研究结果, XPS 结果表明, CoNi2S4/Ni 中含有 Niб+和 Sб-活性物种, 表明 CoNi2S4具有与活性氢化酶类似的活 性中心. Niδ+和 Sδ-可分别作为氢氧根和质子的接收体, 协助促进吸附的水分子的分离, 从而提高材料的催化性能. 所以, Niδ+和 Sδ-活性物种的出现, 大比表面积的三维百合花状多孔结构和良好的电荷传输能力等特性集合于 CoNi2S4/Ni 上使得CoNi2S4/Ni 具有优异的催化氢析出和催化氧析出反应性能.  相似文献   

9.
魏家祺  陈晓东  李述周 《电化学》2022,28(10):2214012
氢气是一种清洁、高效、可再生的新型能源,并且是未来碳中和能源供应中最具潜力的化石燃料替代品。因此,可持续氢能源制造具有极大的吸引力与迫切的需求,尤其是通过清洁、环保、零排放的电解水方法。然而,目前的电解水反应受到其缓慢的动力学以及低成本/能源效率的制约。在这些方面,电化学合成通过制造先进的电催化剂和提供更高效/增值的共电解替代品,为提高水电解的效率和效益提供了广阔的前景。它是一种环保、简单的通过电解或其他电化学操作,对从分子到纳米尺度的材料进行制造的方法。本文首先介绍了电化学合成的基本概念、设计方法以及常用方法。然后,总结了电化学合成技术在电解水领域的应用及进展。我们专注于电化学合成的纳米结构电催化剂以实现更高效的电解水制氢,以及小分子的电化学氧化以取代电解水制氢中的析氧共反应,实现更高效、 增值的共电解制氢。我们系统地讨论了电化学合成条件与产物的关系,以启发未来的探索。最后,本文讨论了电化学合成在先进电解水以及其他能量转换和储存应用方面的挑战和前景。  相似文献   

10.
作为未来最有潜力的制氢技术之一,电解水为解决环境污染和能源危机等问题提供了一种有效的解决途径。然而,阳极析氧反应缓慢的动力学和较高的过电位使其成为电解水装置效率提升的主要瓶颈。因此,开发高活性和高稳定性的析氧反应催化剂对于电解水技术的发展具有重要意义。近年来,镍基金属有机框架材料因其具有丰富可调的拓扑结构、较大的比表面积以及多孔特性,在催化领域受到了越来越多的关注。本文综述了镍基金属有机框架及其衍生材料在析氧催化研究中的最新进展。首先简要介绍了镍基材料在析氧反应中的原理及评价析氧催化剂活性的一些重要参数,并列举了几种镍基金属有机框架材料的结构及其在催化中的优势。随后,结合近年来发表的文献,对单金属、双金属和三金属镍基金属有机框架材料及其衍生物在析氧催化中的研究进展进行了总结与讨论,重点分析了该类材料的设计策略和催化机理。最后对该领域目前所面临的主要挑战以及未来的发展趋势进行了总结与展望。  相似文献   

11.
电催化析氧反应(OER)是电解水制氢的重要半电池反应。然而,OER的缓慢动力学仍需研究高效的电催化剂。在非贵金属催化剂中,NiFe基材料是OER催化剂研究热点。本文通过食人鱼溶液简单一步浸渍刻蚀法将不同Fe含量的泡沫NiFe合金进行氧化,制备了表面具有纳米片形貌的NiFeOOH自支撑电催化剂,并深入研究其电催化析氧性能。通过SEM、XRD、XPS等对电催化剂的形貌结构及成分进行表征,证实了三维多孔基底上NiFeOOH纳米片结构的形成。由于高价镍、铁物种的存在以及二维纳米片结构的生成,NiFeOOH/NF的析氧性能大幅度提高,在10 mA?cm-2的电流密度下过电位仅155.68 mV,Tafel斜率为 88.2 mV?dec-1。这为研制高效、耐用的自支撑非贵金属电极提供了新思路。  相似文献   

12.
采用层层自组装方法在Ni片阳极上构建TiO2/Zn O纳米棒阵列,以二氧化钛前驱体溶胶中掺杂的铁和镍为催化剂,通过气相沉积法在TiO2/Zn O纳米棒阵列间原位生长碳纳米管(CNTs),得到CNT/Fe-Ni/TiO2/Zn O复合光催化剂修饰的光活性Ni片阳极.以碱性电解池为基础,用紫外线辐照修饰的Ni阳极实现光催化和电解水的有机耦合制氢过程.通过场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)、拉曼光谱(Raman)和电化学阻抗谱(EIS)对CNT/Fe-Ni/TiO2/Zn O复合膜光催化剂的结构进行了表征,并测试了其光催化辅助电解水制氢(WEAP)活性.结果表明,生长了碳纳米管的光催化复合膜CNT/Fe-Ni/TiO2/Zn O修饰的Ni阳极的产氢速率分别比Fe-Ni/TiO2/Zn O修饰的Ni阳极和纯Ni片提高了93.7%和533.0%.  相似文献   

13.
正发展电解水制氢和金属-空气电池等电化学能源转化与存储技术对于解决日益严峻的能源短缺和环境污染问题具有重要意义~1。氧气析出反应(OER)是电解水制氢和金属-空气电池的关键半反应,但其缓慢的动力学过程却限制了上述能源技术的快速发展~(2,3)。钌/铱基催化剂是当前最为有效  相似文献   

14.
析氢反应是电解水产制氢的关键反应之一.在碱性条件下,由于催化剂表面与反应过程中产生的氧物种、氢物种与催化剂的吸附未处于最佳状态,析氢反应动力学往往比较缓慢,比在酸性条件下慢2-3个数量级.目前,铂基纳米催化剂被认为是最优的析氢催化剂,但因价格昂贵、稳定性较差,限制了其在电解水器件上的大规模应用.因此,设计一种价格较为低...  相似文献   

15.
采用氢电弧等离子体法制备了具有储氢性能的镍铈纳米颗粒,通过扫描电镜、透射电镜、X光电子能谱、X射线粉末衍射、程序升温还原等手段对比表征了氧化铝负载的纳米镍铈催化剂和工业用负载镍催化剂,并以裂解汽油一段加氢反应为模型反应研究了它们的催化性能.研究结果表明,纳米镍铈催化剂的催化活性和储氢性能与催化剂表面的镍铈合金有关,负载性纳米镍铈催化剂的优良选择性与其特殊的制备方法有关.  相似文献   

16.
电解水制氢是一种环保、简便且易于操控的制氢技术。工业化电解水制氢通常在高电流密度下进行,在制氢过程中会产生大量气泡,而气泡在电极表面聚集粘附会覆盖大量活性位点,导致电解水效率降低。因此,调控气体扩散行为对于工业电解水应用来说至关重要。近年来,超浸润材料因为其独特的润湿性能而备受关注。通过控制催化剂表面的化学组成和多尺度微纳米结构可以构建出超浸润界面材料。此类材料具有超亲水/超疏气的界面结构,有助于水相电解液的有效浸润和原位生成气泡的快速释放,从而提升催化剂的水电解性能。系统介绍了2014年至2023年期间报道的部分具有超亲水/超疏气界面结构的电解水催化剂的现状,概述其材料的合成设计策略和水电解催化性能,并对超浸润水电解催化剂的研究现状、面临的挑战和应用前景进行了总结和展望。  相似文献   

17.
烷基硼酸酯类化合物在有机合成、材料化学和医药领域有着广泛的用途,其合成一直是化学工作者的研究热点.其中,过渡金属催化烯烃硼氢化反应是构建烷基硼酸酯类化合物的最有效方法之一.与铑、钌、钯、铱等贵金属催化剂相比,铁、钴、镍催化剂不但价格便宜,而且具有良好的反应活性和区域选择性.主要综述了1994年以来,铁、钴、镍在催化烯烃硼氢化反应方面的研究进展,详细阐述了不同的催化体系在催化活性、反应选择性、底物适用性等方面的特点.  相似文献   

18.
氢能是一种绿色、 高效的二次能源, 在廉价的非贵金属催化剂的辅助下, 电解水制氢以其低成本和高效率受到广泛关注. 过渡金属磷化物因其独特近似球形三角棱柱单元结构能够暴露出更多配位不饱和表面原子, 因此在电解水制氢中表现出优异的催化活性和强耐腐蚀性. 本文综述了过渡金属磷化物的制备方法和在电催化析氢中的应用和性能的改善策略. 最后讨论了过渡金属磷化物催化剂存在的一些亟待解决的问题, 并展望了其未来的发展方向.  相似文献   

19.
通过乙醇催化燃烧法制备了碳纳米纤维(CNFs),采用化学沉积法在CNFs载体上负载铁钴镍硼化物(FeCoNiB),并以多种测试手段对其表征,研究了化学沉积工艺条件对FeCoNiB粒径、分散、成分及结构的影响,建立了碳纳米纤维负载的铁钴镍硼化物(FeCoNiB/CNFs)可控制备方法。采用电化学测试手段研究了FeCoNiB/CNFs在碱性环境下的氢气析出反应(HER)催化性能。结果表明,在100 mA/cm2的电流密度下,FeCoNiB/CNFs的过电位仅为366 mV,塔菲尔斜率低至41 mV/dec;在持续10 h的稳定性测试中电位衰减幅度很小,基本保持不变。这说明FeCoNiB/CNFs制备成本低,但其高稳定性可媲美贵金属的高催化活性HER催化剂;该研究可为非贵金属HER催化剂的研制及低成本电解水制氢技术的规模化应用提供参考。  相似文献   

20.
氢气是一种能量密度高,可完全燃烧的清洁能源.发展绿色制氢技术对于解决全球环境污染,二氧化碳排放等环境问题具有重要意义.电化学水分解被认为是一种清洁高效的制氢手段,可自恰于可再生能源的波动性,具有效率高、响应快、氢气纯度高等优点.然而,由于电化学反应过电位大及动力学缓慢的原因,驱动电化学水分解的能量消耗巨大.因此,开发高效稳定的双功能电解水催化剂对于制氢和减少能源消耗至关重要.研究表明,催化剂催化活性中心和载体之间的电荷转移策略是调节催化剂局部电子结构,提升电催化反应性能的有效手段.本文利用简单的电化学循环伏安法在电化学反应池中将微量的Pt锚定到含缺陷的NiFe LDHs载体上.通过调节循环伏安曲线圈数,制备了一系列的PtFeNi合金/NiFe LDHs催化剂.由于NiFe LDHs载体缺陷位点周围的不饱和配位结构,Pt原子容易被缺陷捕获锚定形成成核位点,同时NiFe LDHs中缺陷位点周围的Fe,Ni原子更容易被电化学还原,与被缺陷捕获的Pt原子原位结合形成PtFeNi合金纳米粒子,最终形成PtFeNi合金/NiFe LDHs催化剂.通过对催化剂结构和表面价态的分析,构建了相应的模型催化剂.理论计算结果表明,PtFeNi合金纳米粒子和NiFe LDHs载体之间存在电荷转移再分布现象,优化了析氢反应(HER)和析氧反应(OER)中间体的吸附,可以提高HER和OER的电催化活性.实验结果表明,PtFeNi合金/NiFe LDHs异质结构催化剂分别表现出超高的OER和HER双功能催化活性.在100 mA cm–2电流密度下,HER的过电位仅为81 mV,优于商业化的Pt/C催化剂,同时OER的过电位仅为243 mV,优于商业化的IrO2和大多数LDHs电催化剂,且该催化剂都能稳定运行24 h.两电极碱性电解槽测试表明,只需要1.495和1.578 V电压就可分别达到10和100 mA cm–2的电流密度,快速产生氢气和氧气.因此,PtFeNi合金/NiFe LDHs催化剂在碱性条件电解水制氢方面具有非常好的发展前景.同时,本文不但展示了一种独特的缺陷锚定合金纳米粒子,构建纳米异质结催化剂的方法,且发现合金纳米粒子和缺陷载体之间存在电荷转移再分布现象,能够优化电催化反应中间体的吸附,极大地提升电催化反应性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号