首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Highly dispersed palladium nanoclusters incorporated on amino‐functionalized silica sphere surfaces (Pd/SiO2‐NH2) were fabricated by a simple one‐pot synthesis utilizing 3‐(2‐aminoethylamino)propyltrimethoxysilane (AAPTS) as coordinating agent. Uniform palladium nanoclusters with an average size of 1.1 nm can be obtained during the co‐condensation of tetraethyl orthosilicate and AAPTS owing to the strong interaction between palladium species and amino groups in AAPTS. The palladium particle size can be controlled by addition of AAPTS and plays a significant role in the catalytic performance. The Pd/SiO2‐NH2 catalyst exhibits high catalytic activity for succinic acid hydrogenation with 100% conversion and 94% selectivity towards γ‐butyrolactone using 1,4‐dioxane as solvent at 240°C and 60 bar for 4 h. Moreover, the Pd/SiO2‐NH2 catalyst is robust and readily reusable without loss of its catalytic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
The selectivity in the hydrogenation of acrolein over Fe3O4‐supported Pd nanoparticles has been investigated as a function of nanoparticle size in the 220–270 K temperature range. While Pd(111) shows nearly 100 % selectivity towards the desired hydrogenation of the C=O bond to produce propenol, Pd nanoparticles were found to be much less selective towards this product. In situ detection of surface species by using IR‐reflection absorption spectroscopy shows that the selectivity towards propenol critically depends on the formation of an oxopropyl spectator species. While an overlayer of oxopropyl species is effectively formed on Pd(111) turning the surface highly selective for propenol formation, this process is strongly hindered on Pd nanoparticles by acrolein decomposition resulting in CO formation. We show that the extent of acrolein decomposition can be tuned by varying the particle size and the reaction temperature. As a result, significant production of propenol is observed over 12 nm Pd nanoparticles at 250 K, while smaller (4 and 7 nm) nanoparticles did not produce propenol at any of the temperatures investigated. The possible origin of particle‐size dependence of propenol formation is discussed. This work demonstrates that the selectivity in the hydrogenation of acrolein is controlled by the relative rates of acrolein partial hydrogenation to oxopropyl surface species and of acrolein decomposition, which has significant implications for rational catalyst design.  相似文献   

3.
Metal–organic frameworks (MOFs) have recently been identified as versatile sacrificing templates to construct functional nanomaterials for heterogeneous catalysis. Herein, we report a thermal transformation strategy to directly fabricate metal Pd nanoclusters inlaid within a ZrO2@nitrogen‐doped porous carbon (Pd/ZrO2@CN) composite using Pd@NH2‐UiO‐66(Zr) as a precursor that was pre‐synthesized by a one‐pot hydrothermal method. The developed Pd/ZrO2@CN as a robust catalyst delivered remarkable stability and activity to the catalytic hydrogenation of 2,3,5‐trimethylbenzoquinone (TMBQ) to 2,3,5‐trimethylhydroquinone (TMHQ), a key reaction involved in vitamin E production. The hydrogenation was carried out at 110 °C with 1.0 MPa H2, and it resulted in 98% TMHQ yield as the sole product over five consecutive cycles, outperforming the analogue Pd/ZrO2@C without nitrogen doping templated from Pd@UiO‐66(Zr). The excellent catalytic properties of Pd/ZrO2@CN likely originated from the highly stable ultrafine Pd nanoclusters inlaid within ZrO2@CN matrix on account of the strong interaction between N and Pd, as well as on the Lewis acidity of ZrO2, which was beneficial to the hydrogenation.  相似文献   

4.
Chemoselective hydrogenation of 3‐nitrostyrene to 3‐vinylaniline is quite challenging because of competitive activation of the vinyl group and the nitro group over most supported precious‐metal catalysts. A precatalyst comprised of thiolated Au25 nanoclusters supported on ZnAl‐hydrotalcite yielded gold catalysts of a well‐controlled size (ca. 2.0 nm)—even after calcination at 500 °C. The catalyst showed excellent selectivity (>98 %) with respect to 3‐vinylaniline, and complete conversion of 3‐nitrostyrene over broad reaction duration and temperature windows. This result is unprecedented for gold catalysts. In contrast to traditional catalysts, the gold catalyst is inert with respect to the vinyl group and is only active with regard to the nitro group, as demonstrated by the results of the control experiments and attenuated total reflection infrared spectra. The findings may extend to design of gold catalysts with excellent chemoselectivity for use in the synthesis of fine chemicals.  相似文献   

5.
A strategy is presented for making metal clusters encapsulated inside microporous solids selectively accessible to reactant molecules by manipulating molecular sieve size and affinity for adsorbed molecules. This expands the catalytic capabilities of these materials to reactions demanding high selectivity and stability. Selective hydrogen combustion was achieved over Pt clusters encapsulated in LTA zeolite (KA, NaA, CaA) in a propene‐rich mixture obtained from propane dehydrogenation, showing pore‐size dependent selectivity and coking rate. Propene tended to adsorb at channels or external surfaces of zeolite, interfering the diffusion of hydrogen and oxygen. Tailoring the surface of LTA zeolite with additional alkali or alkaline earth oxides contributed to narrowing zeolite pore size and their affinity for propene. The thus‐modified Pt@KA catalyst displayed excellent hydrogen combustion selectivity (98.5 %) with high activity and superior anti‐coking and anti‐sintering properties.  相似文献   

6.
A series of Pd and Pd‐Ga bimetallic catalysts were prepared by a co‐impregnation method for 2‐ethylanthraquinone (EAQ) hydrogenation to produce hydrogen peroxide. Compared with 0.6Pd catalyst, the hydrogenation efficiency of 0.6Pd1.2Ga catalyst (11.9 g L?1) increases by 32.2%, and the stability of 0.6Pd1.2Ga catalyst is also higher than that of 0.6Pd catalyst. The structures of the samples were determined by N2 adsorption–desorption, ICP, XRD, CO chemisorption, TEM, H2‐TPR, in situ CO‐DRIFTS and XPS. The results suggest that incorporation of Ga species improves Pd dispersion and generates a strong interaction between Ga2O3 and Pd interface or between Pd and support. DFT calculation results indicate that the strong adsorption of carbonyl group on Ga2O3/Pd interface facilitates the activation of EAQ and promotes the hydrogenation efficiency.  相似文献   

7.
The direct synthesis of hydrogen peroxide offers a potentially green route to the production of this important commodity chemical. Early studies showed that Pd is a suitable catalyst, but recent work indicated that the addition of Au enhances the activity and selectivity significantly. The addition of a third metal using impregnation as a facile preparation method was thus investigated. The addition of a small amount of Pt to a CeO2‐supported AuPd (weight ratio of 1:1) catalyst significantly enhanced the activity in the direct synthesis of H2O2 and decreased the non‐desired over‐hydrogenation and decomposition reactions. The addition of Pt to the AuPd nanoparticles influenced the surface composition, thus leading to the marked effects that were observed on the catalytic formation of hydrogen peroxide. In addition, an experimental approach that can help to identify the optimal nominal ternary alloy compositions for this reaction is demonstrated.  相似文献   

8.
New N‐Alkyl‐substituted imidazolium salts as well as a series of their corresponding [Pd(NHC)(MA)2] complexes have been obtained by three routes in good yield. The previously reported synthesis for the analogous N‐aryl substituted [Pd(NHC)(MA)2] complexes has been improved. The N‐alkyl‐substituted [Pd(NHC)(MA)2] complexes are thermally more labile than their N‐aryl counterparts. Catalytic transfer semi‐hydrogenation of phenylpropyne resulted in good to excellent chemo‐ and stereo‐ selectivity conversion into (Z)‐phenylpropene. The size of the alkyl substituents correlates with the rate of hydrogenation in the sense that more bulky substituents give rise to faster transfer hydrogenation rates. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Ligand‐stabilized noble metal nanoclusters, prepared by various chemical methods by different research groups in Japan and Germany, were characterized and examined by a common method for application to the catalysis for hydrogenation of olefins in homogeneous and heterogeneous systems in the liquid phase. The mean diameters of palladium, platinum, rhodium and Pd/Pt nanoclusters stabilized by various ligands range from 1.3 to 3.2 nm if prepared by a single reaction, and from 2.2 to 4.0 nm if prepared by a stepwise growth method. The Stokes radii of metal nanoclusters stabilized by surfactants range from 1.7 to 2.1 nm, suggesting a thickness of the protective layer from 1.1 to 1.4 nm, whereas those stabilized by polymers give much larger values, suggesting the formation of aggregates. The catalytic activities of the metal nanoclusters, evaluated by hydrogenation of 1,3‐cyclooctadiene and methyl acrylate, depend mainly upon the particle size, i.e. the smaller the size, the higher the activity. However, a strongly interacting ligand like tetraoctylammonium halide and 1,10‐phenanthroline can disturb the hydrogenation. In contrast, the activities of heterogeneous catalysts supported on charcoal depend strongly on the covering strength of the stabilizer. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
The adsorption of molecules on metal nanoparticles can be sterically controlled through the use of zeolite crystals, which enhances the product selectivity in hydrogenations of reactants with more than one reducible group. Key to this success was the fixation of Pd nanoparticles inside Beta zeolite crystals to form a defined structure (Pd@Beta). In the hydrogenation of substituted nitroarenes with multiple reducible groups as a model reaction, the Pd@Beta catalyst exhibited superior selectivity for hydrogenation of the nitro group, outperforming both conventional Pd nanoparticles supported on zeolite crystals and a commercial Pd/C catalyst. The extraordinary selectivity of Pd@Beta was attributed to the sterically selective adsorption of the nitroarenes on the Pd nanoparticles controlled by the zeolite micropores, as elucidated by competitive adsorption and adsorbate displacement tests. Importantly, this strategy is general and was extended to the synthesis of selective Pt and Ru catalysts by fixation inside Beta and mordenite zeolites.  相似文献   

11.
The selective hydrogenation of alkynes to alkenes is a crucial step in the synthesis of fine chemicals. However, the widely utilized palladium (Pd)-based catalysts often suffer from poor selectivity. In this work, we demonstrate a carbonization-reduction method to create palladium carbide subnanometric species within pure silicate MFI zeolite. The carbon species can modify the electronic and steric characteristics of Pd species by forming the predominant Pd−C4 structure and, meanwhile, facilitate the desorption of alkenes by forming the Si−O−C structure with zeolite framework, as validated by the state-of-the-art characterizations and theoretical calculations. The developed catalyst shows superior performance in the selective hydrogenation of alkynes over mild conditions (298 K, 2 bar H2), with 99 % selectivity to styrene at a complete conversion of phenylacetylene. In contrast, the zeolite-encapsulated carbon-free Pd catalyst and the commercial Lindlar catalyst show only 15 % and 14 % selectivity to styrene, respectively, under identical reaction conditions. The zeolite-confined Pd-carbide subnanoclusters promise their superior properties in semihydrogenation of alkynes.  相似文献   

12.
Bimetallic nanoparticle encapsulation in microporous zeolite crystals is a promising route for producing catalysts with unprecedented reaction selectivities. Herein, a novel synthetic approach was developed to produce PtZnx nanoclusters encapsulated inside zeolite micropores by introducing Pt2+ cations into a zincosilicate framework via ion exchange, and subsequent controlled demetallation and alloying with framework Zn. The resulting zeolites featured nanoclusters with sizes of approximately 1 nm, having an interatomic structure corresponding to a PtZnx alloy as confirmed by pair distribution function (PDF) analysis. These materials featured simultaneous shape and substrate specificity demonstrated by the selective production of p‐chloroaniline from the competitive hydrogenation of p‐chloronitrobenzene and 1,3‐dimethyl‐5‐nitrobenzene.  相似文献   

13.
The spillover of hydrogen species and its role in tuning the activity and selectivity in catalytic hydrogenation have been investigated in situ using surface‐enhanced Raman spectroscopy (SERS) with 10 nm spatial resolution through the precise fabrication of Au/TiO2/Pt sandwich nanostructures. In situ SERS study reveals that hydrogen species can efficiently spillover at Pt‐TiO2‐Au interfaces, and the ultimate spillover distance on TiO2 is about 50 nm. Combining kinetic isotope experiments and density functional theory calculations, it is found that the hydrogen spillover proceeds via the water‐assisted cleavage and formation of surface hydrogen–oxygen bond. More importantly, the selectivity in the hydrogenation of the nitro or isocyanide group is manipulated by controlling the hydrogen spillover. This work provides molecular insights to deepen the understanding of hydrogen activation and boosts the design of active and selective catalysts for hydrogenation.  相似文献   

14.
《化学:亚洲杂志》2018,13(16):2077-2084
Platinum nanoparticles encapsulated into zeolite Y (Pt@Y catalyst) exhibit excellent catalytic selectivity in the hydrogenation of substituted nitroarenes to form the corresponding aromatic amines, even after complete conversion. With the hydrogenation of p‐chloronitrobenzene as a model, the role of zeolite encapsulation toward perfect selectivity can be attributed to constraint of the substrate adsorbed on the platinum surface in an end‐on conformation. This conformation results in the activation of only one adsorbed group, with little influence on the other one in the molecule. Owing to a much lower apparent activation energy of Pt@Y for the hydrogenation of a separately adsorbed nitro group than that of the adsorbed chloro group, the Pt@Y catalyst can prevent hydrodechlorination of p‐chloronitrobenzene under mild conditions. Moreover, such a conformation results in a reduced adsorption energy of target p‐chloroaniline on the platinum surface; thus suppressing the reactivity of hydrodechlorination of p‐chloroaniline to circumvent further C−Cl bond breakage.  相似文献   

15.
Selectivity control is a challenging goal in Fischer–Tropsch (FT) synthesis. Hydrogenolysis is known to occur during FT synthesis, but its impact on product selectivity has been overlooked. Demonstrated herein is that effective control of hydrogenolysis by using mesoporous zeolite Y‐supported cobalt nanoparticles can enhance the diesel fuel selectivity while keeping methane selectivity low. The sizes of the cobalt particles and mesopores are key factors which determine the selectivity both in FT synthesis and in hydrogenolysis of n‐hexadecane, a model compound of heavier hydrocarbons. The diesel fuel selectivity in FT synthesis can reach 60 % with a CH4 selectivity of 5 % over a Na‐type mesoporous Y‐supported cobalt catalyst with medium mean sizes of 8.4 nm (Co particles) and 15 nm (mesopores). These findings offer a new strategy to tune the product selectivity and possible interpretations of the effect of cobalt particle size and the effect of support pore size in FT synthesis.  相似文献   

16.
Intense para‐hydrogen‐enhanced NMR signals are observed in the hydrogenation of propene and propyne over ceria nanocubes, nano‐octahedra, and nanorods. The well‐defined ceria shapes, synthesized by a hydrothermal method, expose different crystalline facets with various oxygen vacancy densities, which are known to play a role in hydrogenation and oxidation catalysis. While the catalytic activity of the hydrogenation of propene over ceria is strongly facet‐dependent, the pairwise selectivity is low (2.4 % at 375 °C), which is consistent with stepwise H atom transfer, and it is the same for all three nanocrystal shapes. Selective semi‐hydrogenation of propyne over ceria nanocubes yields hyperpolarized propene with a similar pairwise selectivity of (2.7 % at 300 °C), indicating product formation predominantly by a non‐pairwise addition. Ceria is also shown to be an efficient pairwise replacement catalyst for propene.  相似文献   

17.
We report supracolloidal self‐assembly of atomically precise and strictly monodisperse gold nanoclusters involving p‐mercaptobenzoic acid ligands (Au102pMBA44) under aqueous conditions into hexagonally packed monolayer‐thick two‐dimensional facetted colloidal crystals (thickness 2.7 nm) and their bending to closed shells leading to spherical capsids (d ca. 200 nm), as controlled by solvent conditions. The 2D colloidal assembly is driven in template‐free manner by the spontaneous patchiness of the pMBA ligands around the Au102pMBA44 nanoclusters preferably towards equatorial plane, thus promoting inter‐nanocluster hydrogen bonds and high packing to planar sheets. More generally, the findings encourage to explore atomically precise nanoclusters towards highly controlled colloidal self‐assemblies.  相似文献   

18.
A novel carbon‐titania composite material, C/TiO2, has been prepared by growing carbon nanofibers (CNFs) on TiO2 surface via methane decomposition using Ni‐Cu as a catalyst. The C/TiO2 was used for preparing supported palladium catalyst, Pd/C/TiO2. The support and Pd/C/TiO2 catalyst were characterized by BET, SEM, XRD and TG‐DTG. Its catalytic performance was evaluated in selective hydrogenation of citral to citronellal, and compared with that of activated carbon supported Pd catalyst. It was found that the Pd/C/TiO2 catalyst contains 97% of mesopores. And it exhibited 88% of selectivity to citronellal at citral conversion of 90% in citral hydrogenation, which was much higher than that of activated carbon supported Pd catalyst. This result may be attributed to elimination of internal diffusion limitations, which were significant in activated carbon supported Pd catalyst, due to its microporous structure.  相似文献   

19.
A series of metal‐modified HZSM‐5 catalysts were prepared by impregnation and were used for ethylbenzene dealkylation of the mixed C8 aromatics (ethylbenzene, m‐xylene and o‐xylene). The effects of different supported metals (Pt, Pd, Ni, Mo) on catalytic performance, including reaction conditions, were investigated. The physicochemical properties of catalysts were characterized by means of XRD, BET, TEM and NH3‐TPD. Experimental results showed that metallic modification obviously increased the ethylbenzene conversion and reduced the coke deposition, greatly improving the catalyst stability. The distinction of ethylbenzene conversion depended on the interaction between hydrogenation reactivity and acidic cracking of bifunctional metal‐modified zeolites. Compared with Pt and Ni, Pd and Mo were easier to disperse into HZSM‐5 micropores during loading metals. The acidic density of different metal‐modified HZSM‐5 declined in the following order: HZSM‐5>Pt/HZSM‐5>Pd/HZSM‐5>Ni/HZSM‐5>Mo/HZSM‐5. The activity of ethylene hydrogenation decreased with Pt/HZSM‐5>Pd/HZSM‐5>Ni/HZSM‐5>Mo/HZSM‐5. In comparison, Pd/HZSM‐5 showed the best catalytic performance with both high activity and high selectivity, with less cracking loss of m‐xylene and o‐xylene. Moreover, the following reaction conditions were found to be preferable for ethylbenzene dealkylation over Pd/HZSM‐5: 340°C, 1.5 MPa H2, WHSV 4 h?1, H2/C8 4 mol/mol.  相似文献   

20.
A continuously working capillary microreactor with a catalytic coating based on mesoporous titanium dioxide with embedded Pd nanoparticles was tested in a reaction of the selective hydrogenation of 2-methyl-3-butyn-2-ol (MBI). The catalytic coatings were obtained by the supporting of a carrier sol, which contained colloidal Pd nanoparticles, onto the internal wall of a quartz capillary with a diameter of 250 μm in the dynamic mode. The effects of the concentration of MBI in methanol (0.05–0.2 mol/L), the partial pressure of hydrogen (0.28–1.0 atm), and the reaction temperature (308–333 K) on the catalyst activity and the selectivity of reaction were studied. High selectivity for the formation of the semi-hydrogenated product 2-methyl-3-buten-2-ol was reached at 313 K in an atmosphere of pure hydrogen. At a conversion of 99.9%, the selectivity was 92.3%, which is 15.5% higher than that in a batch reactor. The rate of hydrogenation on the Pd/TiO2 coating was higher by one order of magnitude than that on a commercial Lindlar catalyst. The coating remained stable upon the continuous passage of the flow of a reaction mixture for 500 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号