首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The targeting of metabolically labeled glycans with conventional MRI contrast agents has proved elusive. In this work, which further expands the utility of xenon Hyper‐CEST biosensors in cell experiments, we present the first successful molecular imaging of such glycans using MRI. Xenon Hyper‐CEST biosensors are a novel class of MRI contrast agents with very high sensitivity. We designed a multimodal biosensor for both fluorescent and xenon MRI detection that is targeted to metabolically labeled sialic acid through bioorthogonal chemistry. Through the use of a state of the art live‐cell bioreactor, it was demonstrated that xenon MRI biosensors can be used to image cell‐surface glycans at nanomolar concentrations.  相似文献   

2.
Chemical exchange saturation transfer (CEST) is a new approach for generating magnetic resonance imaging (MRI) contrast that allows monitoring of protein properties in vivo. In this method, a radiofrequency pulse is used to saturate the magnetization of specific protons on a target molecule, which is then transferred to water protons via chemical exchange and detected using MRI. One advantage of CEST imaging is that the magnetizations of different protons can be specifically saturated at different resonance frequencies. This enables the detection of multiple targets simultaneously in living tissue. We present here a CEST MRI approach for detecting the activity of cytosine deaminase (CDase), an enzyme that catalyzes the deamination of cytosine to uracil. Our findings suggest that metabolism of two substrates of the enzyme, cytosine and 5-fluorocytosine (5FC), can be detected using saturation pulses targeted specifically to protons at +2 ppm and +2.4 ppm (with respect to water), respectively. Indeed, after deamination by recombinant CDase, the CEST contrast disappears. In addition, expression of the enzyme in three different cell lines exhibiting different expression levels of CDase shows good agreement with the CDase activity measured with CEST MRI. Consequently, CDase activity was imaged with high-resolution CEST MRI. These data demonstrate the ability to detect enzyme activity based on proton exchange. Consequently, CEST MRI has the potential to follow the kinetics of multiple enzymes in real time in living tissue.  相似文献   

3.
Chemical exchange saturation transfer (CEST) MRI has recently emerged as a versatile molecular imaging approach in which diamagnetic compounds can be utilized to generate an MRI signal. To expand the scope of CEST MRI applications, herein, we systematically investigated the CEST properties of N-aryl amides with different N-aromatic substitution, revealing their chemical shifts (4.6–5.8 ppm) and exchange rates (up to thousands s−1) are favorable to be used as CEST agents as compared to alkyl amides. As the first proof-of-concept study, we used CEST MRI to detect the enzymatic metabolism of the drug acebutolol directly by its intrinsic CEST signal without any chemical labeling. Our study implies that N-aryl amides may enable the label-free CEST MRI detection of the metabolism of many N-aryl amide-containing drugs and a variety of enzymes that act on N-aryl amides, greatly expanding the scope of CEST MR molecular imaging.  相似文献   

4.
《化学:亚洲杂志》2017,12(20):2660-2665
Fluorescence photoswitching using nanomaterials has recently emerged as a promising approach for the imaging of biological targets. However, despite intensive research efforts during the last decade, practical microscopy of biological targets using photoswitchable nanoparticles in real time remains challenging. To address this problem, we have developed live macrophage cell imaging and single particle imaging methods, using photoswitchable fluorescent diarylethene‐doped polymer nanoparticles (P‐dots) under Xe lamp irradiation. We established a 34‐times prolonged “off‐state”, using P‐dots doped with a diarylethene‐containing methoxy substituent, upon visible‐light irradiation using a Xe lamp and a green fluorescent protein filter cube. To demonstrate the practicality of doped P‐dots imaging, we imaged lysosomes in macrophage cells, and observed 11‐times slower recovery of the fluorescence from the “off‐state” to the “on‐state”, indicating their potential for cellular imaging.  相似文献   

5.
Diamagnetic chemical exchange saturation transfer (CEST) contrast agents offer an alternative to Gd3+‐based contrast agents for MRI. They are characterized by containing protons that can rapidly exchange with water and it is advantageous to have these protons resonate in a spectral window that is far removed from water. Herein, we report the first results of DFT calculations of the 1H nuclear magnetic shieldings in 41 CEST agents, finding that the experimental shifts can be well predicted (R2=0.882). We tested a subset of compounds with the best MRI properties for toxicity and for activity as uncouplers, then obtained mice kidney CEST MRI images for three of the most promising leads finding 16 (2,4‐dihydroxybenzoic acid) to be one of the most promising CEST MRI contrast agents to date. Overall, the results are of interest since they show that 1H NMR shifts for CEST agents—charged species—can be well predicted, and that several leads have low toxicity and yield good in vivo MR images.  相似文献   

6.
Molecular imaging holds considerable promise for elucidating biological processes in normal physiology as well as disease states, but requires noninvasive methods for identifying analytes at sub‐micromolar concentrations. Particularly useful are genetically encoded, single‐protein reporters that harness the power of molecular biology to visualize specific molecular processes, but such reporters have been conspicuously lacking for in vivo magnetic resonance imaging (MRI). Herein, we report TEM‐1 β‐lactamase (bla) as a single‐protein reporter for hyperpolarized (HP) 129Xe NMR, with significant saturation contrast at 0.1 μm . Xenon chemical exchange saturation transfer (CEST) interactions with the primary allosteric site in bla give rise to a unique saturation peak at 255 ppm, well removed (≈60 ppm downfield) from the 129Xe‐H2O peak. Useful saturation contrast was also observed for bla expressed in bacterial cells and mammalian cells.  相似文献   

7.
Carbon nanodots (C‐dots) show great potential as an important material for biochemical sensing, energy conversion, photocatalysis, and optoelectronics because of their water solubility, chemical inertness, low toxicity, and photo‐ and electronic properties. Numerous methods have been proposed for the preparation of C‐dots. However, complex procedures and strong acid treatments are often required, and the as‐prepared C‐dots tend to be of low quality, and in particular, have a low efficiency for photoluminescence. Herein, a facile and general strategy involving the electrochemical carbonization of low‐molecular‐weight alcohols is proposed. As precursors, the alcohols transited into carbon‐containing particles after electrochemical carbonization under basic conditions. The resultant C‐dots exhibit excellent excitation‐ and size‐dependent fluorescence without the need for complicated purification and passivation procedures. The sizes of the as‐prepared C‐dots can be adjusted by varying the applied potential. High‐quality C‐dots are prepared successfully from different small molecular alcohols, suggesting that this research provides a new, highly universal method for the preparation of fluorescent C‐dots. In addition, luminescence microscopy of the C‐dots is demonstrated in human cancer cells. The results indicate that the as‐prepared C‐dots have low toxicity and can be used in imaging applications.  相似文献   

8.
Caged xenon has great potential in overcoming sensitivity limitations for solution‐state NMR detection of dilute molecules. However, no application of such a system as a magnetic resonance imaging (MRI) contrast agent has yet been performed with live cells. We demonstrate MRI localization of cells labeled with caged xenon in a packed‐bed bioreactor working under perfusion with hyperpolarized‐xenon‐saturated medium. Xenon hosts enable NMR/MRI experiments with switchable contrast and selectivity for cell‐associated versus unbound cages. We present MR images with 103‐fold sensitivity enhancement for cell‐internalized, dual‐mode (fluorescence/MRI) xenon hosts at low micromolar concentrations. Our results illustrate the capability of functionalized xenon to act as a highly sensitive cell tracer for MRI detection even without signal averaging. The method will bridge the challenging gap for translation to in vivo studies for the optimization of targeted biosensors and their multiplexing applications.  相似文献   

9.
Poor sensitivity and low specificity of current molecular imaging probes limit their application in clinical settings. To address these challenges, we used a process known as cell‐SELEX to develop unique molecular probes termed aptamers with the high binding affinity, sensitivity, and specificity needed for in vivo molecular imaging inside living animals. Importantly, aptamers can be selected by cell‐SELEX to recognize target cells, or even surface membrane proteins, without requiring prior molecular signature information. As a result, we are able to present the first report of aptamers molecularly engineered with signaling molecules and optimized for the fluorescence imaging of specific tumor cells inside a mouse. Using a Cy5‐labeled aptamer TD05 (Cy5‐TD05) as the probe, the in vivo efficacy of aptamer‐based molecular imaging in Ramos (B‐cell lymphoma) xenograft nude mice was tested. After intravenous injection of Cy5‐TD05 into mice bearing grafted tumors, noninvasive, whole‐body fluorescence imaging then allowed the spatial and temporal distribution to be directly monitored. Our results demonstrate that the aptamers could effectively recognize tumors with high sensitivity and specificity, thus establishing the efficacy of these fluorescent aptamers for diagnostic applications and in vivo studies requiring real‐time molecular imaging.  相似文献   

10.
The optimal exchange properties for chemical exchange saturation transfer (CEST) contrast agents on 3 T clinical scanners were characterized using continuous wave saturation transfer, and it was demonstrated that the exchangeable protons in phenols can be tuned to reach these criteria through proper ring substitution. Systematic modification allows the chemical shift of the exchangeable protons to be positioned between 4.8 to 12 ppm from water and enables adjustment of the proton exchange rate to maximize CEST contrast at these shifts. In particular, 44 hydrogen‐bonded phenols are investigated for their potential as CEST MRI contrast agents and the stereoelectronic effects on their CEST properties are summarized. Furthermore, a pair of compounds, 2,5‐dihydroxyterephthalic acid and 4,6‐dihydroxyisophthalic acid, were identified which produce the highest sensitivity through incorporating two exchangeable protons per ring.  相似文献   

11.
Sugar chains are important molecules in cellular recognition and signaling, and quantum dots (QDs) are a very powerful tool for in vitro and in vivo imaging. Herein, we report the preparation of stable sugar‐chain‐immobilized fluorescent nanoparticles (SFNPs) and their application to the analysis of sugar‐chain–protein interactions and cellular imaging. SFNPs were easily prepared by mixing CdTe/CdS core/shell QDs with our previously developed sugar‐chain–ligand conjugates. The obtained SFNPs were very stable and could be stored for several months. In the binding analysis, β‐galactose‐ and α‐glucose‐immobilized SFNPs were specifically interacted with Ricinus communis agglutinin I and concanavalin A, respectively, and made into aggregates. The binding interaction was detected visually, fluorescently, or both. In the experiment for cellular imaging, it was found that SFNPs were predominantly taken up by human hepatocyto carcinoma cells (HepG2), suggesting the possible usage of our designed SFNPs for various biochemical analyses of sugar chains.  相似文献   

12.
We report the design, synthesis, and biological testing of highly stable, nontoxic perfluoropolyether (PFPE) nanoemulsions for dual 19F MRI-fluorescence detection. A linear PFPE polymer was covalently conjugated to common fluorescent dyes (FITC, Alexa647 and BODIPy-TR), mixed with pluronic F68 and linear polyethyleneimine (PEI), and emulsified by microfluidization. Prepared nanoemulsions (<200 nm) were readily taken up by both phagocytic and non-phagocytic cells in vitro after a short (approximately 3 h) co-incubation. Following cell administration in vivo, 19F MRI selectively visualizes cell migration. Exemplary in vivo MRI images are presented of T cells labeled with a dual-mode nanoemulsion in a BALB/c mouse. Fluorescence detection enables fluorescent microscopy and FACS analysis of labeled cells, as demonstrated in several immune cell types including Jurkat cells, primary T cells and dendritic cells. The intracellular fluorescence signal is directly proportional to the 19F NMR signal and can be used to calibrate cell loading in vitro.  相似文献   

13.
Carbon dots have unique advantages in biological applications owing to their excellent optical prope rties.However,the biosafety evaluation of carbon dots has limitations owing to cytotoxicity in vitro,and the re is little pre-safety evaluation before in vivo and clinical applications.Whether the carbon dots are or not suitable for applications in vivo,evaluation analysis can be made based on hemolysis and changes in erythrocyte morphology.In this work,a green fluorescent N,S-doped carbon dots(N,S-CDs)were obtained by hydrothermal method,tobias acid,and m-phenylenediamine as precursors.N,S-CDs not only possessed excellent dispersibility,uniform particle size,high quantum yield(37.2%)and stable photoluminescence property but also retain their photostability and stro ng fluorescence intensity in the acid/alkaline solutions,different ionic strengths(NaCl)and under 365 nm UV illumination.Moreove r,the N,S-CDs displayed low cytotoxicity and high cellular uptake efficiency in human umbilical vein endothelial cells(HUVEC)and excellent blood compatibility to the erythrocyte.It is foreseeable that N,S-CDs could be further studied as a promising biological imaging agent in vivo.  相似文献   

14.
用于疾病诊断的Gd~Ⅲ/量子点多模态成像探针的构建   总被引:2,自引:0,他引:2  
结合核磁共振成像(MRI)和荧光成像技术,以钆离子、近红外低毒量子点、二氧化硅和聚丙烯酸(PAA)等为原料,采用一系列纳米载体自组装技术,构建出MRI弛豫率/荧光效率高和生物相容性好的GdⅢ/量子点多模态纳米探针.结果表明,与未螯合GdⅢ的量子点纳米探针相比,GdⅢ/量子点多模态纳米探针具有更高的弛豫率;t1-加权MRI成像也证实了GdⅢ/量子点多模态纳米探针具有很好的阳性造影功效.  相似文献   

15.
In this work, a novel polymeric quantum dot/aptamer superstructure with a highly intense fluorescence was fabricated by a molecular engineering strategy and successfully applied to fluorescence imaging of cancer cells. The polymeric superstructure, which is composed of both multiple cell‐based aptamers and a high ratio of quantum dot (QD)‐labeled DNA, exploits the target recognition capability of the aptamer, an enhanced cell internalization through multivalent effects, and cellular disruption by the polymeric conjugate. Importantly, the polymeric superstructure exhibits an increasingly enhanced fluorescence with recording time and is thus suitable for long‐term fluorescent cellular imaging. The unique and excellent fluorescence property of the QD superstructure paves the way for developing polymeric QD superstructures that hold promise for applications such as in vivo imaging.  相似文献   

16.
In recent years, semiconducting polymer nanoparticles have attracted considerable attention because of their outstanding characteristics as fluorescent probes. These nanoparticles, which primarily consist of π‐conjugated polymers and are called polymer dots (Pdots) when they exhibit small particle size and high brightness, have demonstrated utility in a wide range of applications such as fluorescence imaging and biosensing. In this review, we summarize recent findings of the photophysical properties of Pdots which speak to the merits of these entities as fluorescent labels. This review also highlights the surface functionalization and biomolecular conjugation of Pdots, and their applications in cellular labeling, in vivo imaging, single‐particle tracking, biosensing, and drug delivery. We discuss the relationship between the physical properties and performance, and evaluate the merits and limitations of the Pdot probes for certain imaging tasks and fluorescence assays. We also tackle the current challenges of Pdots and share our perspective on the future directions of the field.  相似文献   

17.
Improved cellular selectivity for nucleoli staining was achieved by simple chemical modification of carbon dots (C‐dots) synthesized from waste carbon sources such as cow manure (or from glucose). The C‐dots were characterized and functionalized (amine‐passivated) with ethylenediamine, affording amide bonds that resulted in bright green fluorescence. The new modified C‐dots were successfully applied as selective live‐cell fluorescence imaging probes with impressive subcellular selectivity and the ability to selectively stain nucleoli in breast cancer cell lineages (MCF‐7). The C‐dots were also tested in four other cellular models and showed the same cellular selection in live‐cell imaging experiments.  相似文献   

18.
In recent years, semiconducting polymer dots (Pdots) have emerged as a new type of ultrabright fluorescent probes, which have been proved to be very useful for biomedical imaging. Pdots possess several exceptional advantages including high fluorescence brightness, fast radiative rate, excellent photostability, and negligible cytotoxicity. Among these new types of Pdots, the near‐infrared (NIR) fluorescent Pdots appear to be the most urgent and important owing to their promising deep‐tissue imaging in the clinic. This mini‐review highlights the recent progress in the design of NIR‐emitting Pdots and their biomedical applications both in vitro and in vivo.  相似文献   

19.
Fluorescent derivatives of the 129Xe NMR contrast agent cryptophane‐A were obtained by functionalization with near infrared fluorescent dyes DY680 and DY682. The resulting conjugates were spectrally characterized, and their interaction with giant and large unilamellar vesicles of varying phospholipid composition was analyzed by fluorescence and NMR spectroscopy. In the latter, a chemical exchange saturation transfer with hyperpolarized 129Xe (Hyper‐CEST) was used to obtain sufficient sensitivity. To determine the partitioning coefficients, we developed a method based on fluorescence resonance energy transfer from Nile Red to the membrane‐bound conjugates. This indicated that not only the hydrophobicity of the conjugates, but also the phospholipid composition, largely determines the membrane incorporation. Thereby, partitioning into the liquid‐crystalline phase of 1,2‐dipalmitoyl‐sn‐glycero‐3‐phosphocholine was most efficient. Fluorescence depth quenching and flip‐flop assays suggest a perpendicular orientation of the conjugates to the membrane surface with negligible transversal diffusion, and that the fluorescent dyes reside in the interfacial area. The results serve as a basis to differentiate biomembranes by analyzing the Hyper‐CEST signatures that are related to membrane fluidity, and pave the way for dissecting different contributions to the Hyper‐CEST signal.  相似文献   

20.
Chitosan‐based nanocarriers (ChNCs) are considered suitable drug carriers due to their ability to encapsulate a variety of drugs and cross biological barriers to deliver the cargo to their target site. Fluorescein isothiocyanate‐labeled chitosan‐based NCs (FITC@ChNCs) are used extensively in biomedical and pharmacological applications. The main advantage of using FITC@ChNCs consists of the ability to track their fate both intra and extracellularly. This journey is strictly dependent on the physico‐chemical properties of the carrier and the cell types under investigation. Other applications make use of fluorescent ChNCs in cell labeling for the detection of disorders in vivo and controlling of living cells in situ. This review describes the use of FITC@ChNCs in the various applications with a focus on understanding their usefulness in labeled drug‐delivery systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号