首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A glassy carbon electrode was modified with dsDNA and a nanocomposite composed of multi-walled carbon nanotubes and chitosan (MWNT-chit). The electrode was applied to the electrochemical detection of DNA damage as induced by in situ generated bisphenol A (BPA) radicals through electro-oxidation. The modified electrode was characterized by cyclic voltammetry and electrochemical impedance spectroscopy. The results indicate that MWNT-chit nanocomposite represents a viable platform for the immobilization of DNA that effectively promotes electron transfer between DNA and the electrode. The mode of interaction between DNA and BPA was investigated by differential pulse voltammetry and UV-vis spectrophotometry, indicating that the dominant interaction is intercalation. In order to explore the mechanism of damage caused by BPA radicals, the electro-oxidation of BPA at the modified glass electrode was investigated. Based on the signal for guanine without any other external indicator, DNA damage was investigated through the electro-oxidation of BPA.  相似文献   

2.
A reliable and simple sensor was fabricated by modifying a carbon paste electrode with nanosized gold particles and poly (glutamic acid) for determination of paracetamol (PAR). The modified electrode exhibited an effective catalytic response to the oxidation and reduction of PAR with good reproducibility and stability. The determination was carried out by differential pulse adsorptive stripping voltammetry after a 30 s accumulation time with an open circuit potential and under stirring. The calibration curve is linear in the range from 0.05 to 70 μM of PAR (with a correlation coefficient of 0.9990), and the sensitivity is 1.51 μA·μM-1. The modified electrode was used to detect PAR in commercial tablets.  相似文献   

3.
With the example of the determination of Tl(I) with a mercury-carbon electrode generated in situ on a carbon fiber substrate, it is shown that an electrode with a monolayer thickness of the mercury film reduces the quantification limit of the metal as compared to the electrode with a thick mercury film (down to 10?10 M). Studying the electrooxidation kinetics of Tl (Zn, Cd, Pb) showed that the rate constant and the transport coefficient at this electrode are independent of the electrode polarization rate. It is found that the rate constant of the electrode process and the slope of the calibration plot linearly depend on the atomic radius of the metal under study.  相似文献   

4.
In the present work, the aluminum electrode surface was modified with a thin layer of palladium by dipping its polished surface in a 25% ammonia solution of PdCl2. The electrocatalytic ability of the modified electrode towards the paracetamol (PCT), ascorbic acid (AA), and codeine (CO) oxidation was investigated using cyclic voltammetry, chronoamperometry. The number of electrons for rate-determining step and diffusion coefficient of PCT, AA, and CO were determined. The electro-oxidation pathway and kinetics, including transfer coefficient α and diffusion coefficient D, are estimated. The results indicated that the simultaneous voltammetry of the three compounds was possible in a mixture solution.  相似文献   

5.
This work describes the promising activity of silver nanoparticles on the surface of a poly(2-amino diphenylamine) modified carbon paste electrode (CPE) towards formaldehyde oxidation. Electrodeposition of the conducting polymer film on the CPE was carried out using consecutive cyclic voltammetry in an aqueous solution of 2-aminodiphenylamine and HCl. Nitrogen groups in the polymer backbone had a Ag ion accumulating effect, allowing Ag nanoparticles to be electrochemically deposited on the surface of the electrode. The electrochemical and morphological characteristics of the modified electrode were investigated. The electro-oxidation of formaldehyde on the surface of electrode was studied using cyclic voltammetry and chronoamperometry in aqueous solution of 0.1 mol/L NaOH. The electro-oxidation onset potential was found to be around -0.4 V, which is unique in the literature. The effect of different concentrations of formaldehyde on the electrocatalytic activity of the modified electrode was investigated. Finally, the diffusion coefficient of formaldehyde in alkaline media was calculated to be 0.47 × 10-6 cm2/s using chronoamperometry.  相似文献   

6.
The voltammetric behavior of uric acid (UA) was studied with an Au electrode modified with single-wall carbon nanotubes (SWNTs). In 0.1 M HAc-NaAc buffer solution (pH 5.0), the SWNT-modified electrode shows high electrocatalytic activity toward UA oxidation. The electro-oxidation of UA is an irreversible diffusion-controlled process with a diffusion coefficient (D) of 8.85×10−6 cm2 s−1. The peak current increases linearly with the concentration of UA in the range of 4.0×10−6-7.0×10−4 M. The detection limit is 1.0×10−6 M. The SWNT was characterized with scanning electron microscopy (SEM). Furthermore, the SWNT-modified electrode has favorable electrocatalytic activity toward dopamine and norepinephrine. This SWNT-modified electrode can also separate the electrochemical responses of uric acid, norepinephrine and ascorbic acid.  相似文献   

7.
应用循环伏安和恒电位电解法研究了茴香醚在铂电极上直接电氧化行为.考查扫描速率、反应底物浓度、支持电解质和溶剂对该电氧化行为的影响.结果表明,茴香醚在铂电极上的氧化过程是不可逆的.在硫酸/丙酮溶液中,其响应峰电流最高,反应受扩散控制.经GC-MS检测,主要氧化产物为茴香醛,选择性为66.5%.  相似文献   

8.
A carbon paste electrode, modified with N,N′-bis-(2-hydroxy-1-naphthalidene)ethylenediamine and multi-walled carbon nanotubes (HNED-MWCNPE), was used for the determination of acetaminophen (ACOP) and propranolol (PP). Cyclic voltammetry (CV), chronocoulometry, chronoamperometry and differential pulse voltammetry (DPV) techniques were employed to study electro-oxidation of ACOP. The results revealed that the modified electrode showed an electrocatalytic activity toward the anodic oxidation of acetaminophen by a marked enhancement in the current response in buffered solution at pH 8.0. Some kinetic parameters such as the electron transfer coefficient (α) were also determined for the ACOP oxidation. The linear concentration range of 1 × 10?3?1 × 10?6 M with a detection limit of 4.6 × 10?8 M (n = 16) for ACOP was obtained using DPV (pH 8.0). The modified electrode shows good sensitivity, selectivity and stability. The prepared electrode was also applied for the determination of ACOP in human blood serum.  相似文献   

9.
Identification of protein phosphorylation is an important goal in proteomics, because of the central role played by phosphorylation in the regulation of cellular activities. An exciting consequence of tyrosine (Tyr) oxidation is that it allows a clear distinction between the phosphorylated and non-phosphorylated forms of peptides using electrochemical analysis. In this report, we monitored the effect of phosphorylation on the electro-oxidation of Tyr in connection with differential pulse voltammetry (DPV) using a screen-printed carbon electrode (SPCE). First, we monitored the electrochemical current responses of Tyr and o-phospho-l-Tyrosine (l-3-(4-hydroxyphenyl)alanine 4′-phosphate, Tyr-P). The detection limit for Tyr was determined as 10 nM on the SPCE surface (S/N = 3). We observed that the phosphorylation caused a significant suppression on the electro-oxidation of Tyr. We also monitored the electrochemical responses of Src peptide 521–533 (H–Thr-Ser-Thr-Glu-Pro-Gln-Tyr-Gln-Pro-Gly-Glu-Asn-Leu–OH), both in the non-phosphorylated and phosphorylated forms. The detection limit for Src peptide was determined as 100 nM (S/N = 3). By monitoring the current signals obtained from the Tyr kinase substrate peptides, we suggest that label-free electrochemical in vitro detection of Tyr phosphorylation can be performed in a rapid and cost-effective format.  相似文献   

10.
Through layer-by-layer adsorption (LBL) technique, the positively charged multiwalled carbon nanotubes (MWCNTs) and negatively charged graphene multilayer film were formed on graphite-poly(diallyldimethylammoniumchloride)-polystyrenesulphonate (Gr/PDDA/PSS) modified electrode. Due to large surface area and remarkable electrocatalytic properties of MWCNTs and graphene, the Gr/(PDDA/PSS-[MWCNTs-NH 3 + -graphene-COO?]5) electrode exhibits potent electrocatalytic activity towards the electro-oxidation of nicotinamide adenine dinucleotide (NADH). A substantial decrease in the overpotential was observed at modified electrode, and the electrode showed high sensitivity to the electrocatalytic oxidation of NADH. The modified electrode was characterized by cyclic voltammetry and electrochemical impedance spectroscopy. The diffusion coefficient was calculated by chronocoulometry. Chronoamperometric studies showed the linear relationship between oxidation peak current and the concentration of NADH in the range 25–250?μM (R?=?0.999) with the detection limit of 0.1?μM (S/N?=?3). Further, dopamine, uric acid, acetaminophen and hydrogen peroxide do not interfere in the detection of NADH. The ability of MWCNTs and graphene to promote the electron transfer between NADH and the electrode exhibits a promising biocompatible platform for development of dehydrogenase-based amperometric biosensors. Alcohol dehydrogenase (ADH) was casted on Gr/(PDDA/PSS-[MWCNTs-NH 3 + -graphene-COO?]5) electrode; the resulting biosensor showed rapid and high sensitive amperometric response to ethanol with the detection limit of 10?μM (S/N?=?3).  相似文献   

11.
《Comptes Rendus Chimie》2008,11(9):1063-1073
Carbon paste electrodes modified with different zeolites (MFI and FAU) were studied in order to evidence the electro-oxidation of p-cresol. Cyclovoltammetric experiments were applied by direct measurement in p-cresol-containing aqueous solution, or during release in solution without p-cresol after impregnation. In both cases, the electro-oxidation signal of p-cresol led to two oxidation peaks. Different concentrations of p-cresol were studied. Influences of charge compensating cations, electrode impregnation time and zeolite type were investigated. It was shown that electrochemical measurements could be used as a detection method for p-cresol in aqueous solution with a high sensitivity.  相似文献   

12.
Electrochemical oxidation of ammonia (NH3 and NH4 + ) on boron-doped diamond (BDD) electrode was studied using differential electrochemical mass-spectrometry (DEMS) and chronoamperometry. Electro-oxidation of ammonia induces inhibition of the oxygen evolution reaction (OER) due to adsorption of the ammonia oxidation products on the BDD surface. The inhibition of the OER enhances ammonia electro-oxidation, which becomes the main reaction. The amino radicals, formed during ammonia oxidation, trigger a reaction chain in which molecular oxygen dissolved in solution is involved in the ammonia electro-oxidation. Nitrogen, nitrous oxide, and nitrogen dioxide were detected as the ammonia oxidation products, with nitrogen being the main gaseous product of the oxidation.  相似文献   

13.
The interaction of netropsin with calf thymus, Bacillus cereus and Micrococcus luteus DNAs and with the RNA of phage f2 was studied by means of differential pulse voltammetry at a paraffin-wax-impregnated spectroscopic graphite electrode. It was found that the oxidation voltammetric peaks of double-helical calf thymus and Bacillus cereus DNAs were lowered when netropsin was added to the DNA solution. The peak corresponding to electro-oxidation of adenine residues was lowered more than that corresponding to electro-oxidation of guanine residues. Under the same experimental conditions the oxidation peaks of double-helical Micrococcus luteus DNA, double-helical RNA and thermally denatured samples of all DNAs used were almost uninfluenced by the addition of netropsin. The results observed were explained by (i) decreased flexibility of the segments to which netropsin was bound, and (ii) the specific binding of netropsin to the segments of double-helical DNA rich in adenine thymine pairs.  相似文献   

14.
碳纳米管负载纳米铂修饰电极及电催化氧化H2O2的研究   总被引:14,自引:0,他引:14  
采用化学气相沉积法在碳纳米管(CNT)上负载Pt纳米颗粒,并制备了CNT-Pt修饰玻碳电极(CNT-Pt/GCE).研究了该修饰电极在磷酸缓冲液中对H2O2的电催化氧化作用以及实验条件的影响.计算了H2O2在CNT-Pt/GCE上的电极反应速率常数.结果表明,CNT-Pt/GCE对H2O2的电化学氧化具有良好的催化作用,电极反应速率常数比铂电极高约2.65倍.初步探讨了电催化氧化机理,为酶电化学传感器的研制提供了一条新的途径.  相似文献   

15.
Multi-walled carbon nanotubes (MWCNTs) functionalized by cobalt nanoparticles were obtained using a single step chemical deposition method in an ultrasonic bath. The composite material was characterized using scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The electroactivity of the cobalt-functionalized MWCNTs was assessed in respect to the electrooxidation of paracetamol (PAR) and dopamine (DA). It was found that the carbon nanotube supported cobalt nanoparticles have significantly higher catalytic properties. The proposed electrode has been applied for the simultaneous determination of PAR and DA. The modified electrode could resolve the overlapped voltammetric waves of PAR and DA into two well-defined voltammetric peaks with peak to peak separation of about 203 mV. On the other hand, the presence of potential drug interfering compounds AA and UA did not affect the voltammetric responses of PAR and DA. The current of oxidation peaks showed a linear dependent on the concentrations of PAR and DA in the range of 5.2 × 10−9–4.5 × 10−7 M (R2 = 0.9987) and 5.0 × 10−8–3.0 × 10−6 M (R2 = 0.9999), respectively. The detection limits of 1.0 × 10−9 M and 1.5 × 10−8 M were obtained for PAR and DA, respectively. The proposed electrode showed good stability (peak current change: 4.9% with and RSD of 2.6% for PAR; 5.5% with and RSD of 3.0% for DA over 3 weeks), reproducibility (RSD 2.3% for PAR and RSD 1.5% for DA), repeatability (RSD 2.25% for PAR and RSD 2.50% for DA) and high recovery (99.7% with an RSD of 1.3% for PAR; 100.8% with an RSD of 1.8% for DA). The proposed method was successfully applied to the determination of PAR and DA in pharmaceuticals.  相似文献   

16.
A novel titanium-supported nickel electrode (Ni/Ti) is fabricated by a simple hydrothermal process using hydrazine hydrate as a reduction agent. Its electrocatalytic activity towards cyclohexanol oxidation has been investigated by cyclic voltammetry (CV), chronoamperometry (CA), quasi-steady state polarization and electrochemical impedance spectroscopy (EIS). Effects of various parameters such as potential scan rate and cyclohexanol concentration on the electro-oxidation of cyclohexanol are investigated. Results show that the Ni/Ti electrode behaves as an efficient catalyst for the electro-oxidation of cyclohexanol in basic media and its electrocatalytic activity towards cyclohexanol oxidation is higher than a nickel oxyhydroxide modified nickel electrode (NOMN). It is confirmed that during the anodic potential sweep the electro-oxidation of cyclohexanol follows the formation of NiOOH on the electrode surface and is then catalysed by NiOOH. The rate-determining step for cyclohexanol oxidation is the reaction between the high oxidation state nickel (Ni3+) and the adsorbed cyclohexanol on the surface of the Ni/Ti.  相似文献   

17.
将预处理后的钛片作为电极基体, 采用恒电流法沉积Pt和Fe, 通过高温热处理得到Ti/Pt-Fe电极, 通过扫描电镜(SEM)、X射线衍射(XRD)、电子能谱(EDS)以及等离子发射光谱(ICP)等方法对所制备电极表面形貌、组分的合金化程度、催化层成分组成以及电极寿命等进行了表征; 在煤浆电解过程中, 采用两电极体系, 对所制备电极的电催化活性进行了测试. 结果表明: 所制备的电极表面呈层状结构, 且有大量峰形突起, 催化层形成了PtFe合金, 合金化程度较高, 与同面积的铂片电极、Ti/TiO2Pt-Ru电极相比, 大大提高了电催化活性, 降低了电极成本.  相似文献   

18.
The coulometric titration of 20–200 μeq of acids and bases in DMSO media is described. In the titration of bases, the electro-oxidation of hydrogen at a platinized platinum electrode is used as the source of protons. The conditions for 100 % current efficiency at this electrode are low current density to avoid passivity and regular treatment of the electrode with potassium dichromate—sulfuric acid to remove a poisoning sulfide layer. The accuracy of the titrations is better than ±1 %. Very weak acids like phenols (pKa (DMSO) ≈16) can be titrated successfully. Tris(hydroxymethyl)aminomethane is the weakest base titrated.  相似文献   

19.
Acrylic acid was first electropolymerized on the surface of a gold electrode. Then, polyaniline (PANI) was electrodeposited on the poly(acrylic acid) (PAA) network to give a PANI–PAA composite film. Scanning electron microscopy and electrochemical studies confirmed the formation of PANI–PAA composite which exhibited excellent electroactivity over a wide pH range. The electro-oxidation of ascorbic acid (AA) was studied in detail. The modified electrode exhibits significantly reduced oxidation overpotential. The response towards AA is linear in the range 1.0 μM to 9.3 mM (R?=?0.9997, n?=?33) at a potential of 0.1 V (vs. SCE). The sensitivity is 207 μA mM-1 cm-2, and the detection limit is 1.0 μM (S/N?=?3). Interferences by uric acid and dopamine are negligible. The electrode thus enables sensitive and selective determination of AA, with a performance superior to many other PANI–based ascorbate sensors.  相似文献   

20.
The influence of the iridium oxide thin film on the electrocatalytic properties of platinum nanoparticles was investigated using the electro-oxidation of methanol and CO as a probe. The presence of the IrO(2) thin film leads to the homogeneous dispersion of Pt nanoparticles. For comparison, polycrystalline platinum and Pt nanoparticles dispersed on a Ti substrate in the absence of an IrO(2) layer (Ti/Pt) were also investigated in this study. Inverted and enhanced CO bipolar peaks were observed using an in situ electrochemical Fourier transform infrared technique during the methanol oxidation on the Pt nanoparticles dispersed on a Ti substrate. Electrochemical impedance studies showed that the charge transfer resistance was significantly lower for the Ti/IrO(2)/Pt electrode compared with that of the massive Pt and Ti/Pt nanoparticles. The presence of the IrO(2) thin film not only greatly increases the active surface area but also promotes CO oxidation at a much lower electrode potential, thus, significantly enhancing the electrocatalytic activity of Pt nanoparticles toward methanol electro-oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号