首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Direct (non-mediated) electrochemical oxidation of ammonia on boron-doped diamond (BDD) electrode proceeds mainly at high pH (> 8) via free ammonia (NH3) oxidation. To enhance ammonia oxidation on BDD at low pH (< 8), where mainly ammonium (NH4+) is present, oxidation of ammonia was mediated by active free chlorine. In this process, electro-generated in situ active chlorine rapidly reacts with ammonia instead of being further electro-oxidized to chlorate at the electrode surface. Thus, active chlorine effectively removes ammonia from an acidic solution, while the formation of by-products such as chlorate and possibly perchlorate is minimized.  相似文献   

2.
It has been reported that the oxygen evolution reaction (OER) on boron-doped diamond (BDD) electrodes appears at high overpotential and results in unusually high Tafel slope. In this work, we have studied the OER in 1 M HClO4 on BDD macroelectrode and microelectrodes-array (MEA). The correction of the anodic polarization curve for ohmic drop has been performed on BDD macroelectrode taking into account the total uncompensated resistance of the studied system. On BDD MEA, no correction of the polarization curve was necessary due to the small contribution of ohmic drop to the measured potential. At low overpotential (<1.2 V), abnormally high Tafel slopes (340 and 680 mV dec−1 on BDD MEA and BDD, respectively) have been observed. Such high slopes may result from the presence of surface redox couples/functional groups which act as a barrier for OER on BDD. In this potential region, the Tafel slope depends strongly on the state of the electrode surface. In the high overpotential region (>1.2 V), the Tafel slope has been found equal to 120 mV dec−1, which is the theoretical value considering a first or a second electron transfer step as the rate determining step.  相似文献   

3.
The paper reports on the electrochemical study of heavily boron-doped diamond (BDD) in aqueous media. Cyclic voltammetry and Mott-Schottky analysis were used to evaluate the influence of the surface termination on the electrochemical properties of BDD electrodes. The behavior of aminated BDD (NH2–BDD) interfaces, prepared from hydrogen-terminated BDD using NH3 plasma and from photochemically oxidized BDD (HO–BDD) using 3-aminopropyltrimethoxysilane (APTMES), are investigated and compared to those of H–BDD and HO–BDD. While H–BDD and HO–BDD electrodes show classical semiconductor behavior, amine-terminated BDD interfaces exhibit metallic behavior at pH < 10 and a semiconductor behavior at more basic pH.  相似文献   

4.
This study is concerned with the electrocatalytic evolution of oxygen gas at manganese oxide nanorods modified Pt, Au and GC electrodes in 0.5 M KOH solution. The electrochemical measurements revealed a significant enhancement of the electrocatalytic activity of the Pt, Au and GC electrodes towards the oxygen evolution reaction (OER) upon the electrodeposition of manganese oxide nanoparticles (nano-MnOx), that is, the onset potentials of the OER at the modified Pt, Au and GC electrodes are more negative by about 300, 550 and 300 mV, respectively, compared with the bare (i.e., unmodified) electrodes. MnOx is electrodeposited in a porous nano-texture structure which covers the entire surface of the substrates homogeneously. The MnOx of a single crystalline manganite phase (γ-MnOOH) plays a vital role as a catalytic mediator, which facilitates the charge transfer during the water oxidation into molecular oxygen and thus the OER is accomplished at less positive potentials.  相似文献   

5.
《Comptes Rendus Chimie》2008,11(9):1004-1009
The paper reports on the electrocatalytic activity of boron-doped diamond (BDD) electrodes electrochemically modified with palladium (Pd) or gold nanoparticles (Au NPs) towards oxygen reduction reaction (ORR) in alkaline medium. The BDD/Pd NP interface shows a well-defined diffusion-controlled voltammetric oxygen reduction peak at −0.25 V vs. Ag/AgCl. This is more positive than the ORR peak at −0.59 V vs. Ag/AgCl observed on BDD/Au-NP composite electrodes. The ORR proceeds via a four-electron process in both cases.  相似文献   

6.
The kinetics of Os(VIII) catalysed oxidation of l-lysine by diperiodatoargentate(III) (DPA) in alkaline medium at T = 298 K and a constant ionic strength of 0.50 mol · dm?3 was studied spectrophotometrically. The oxidation products are aldehyde (5-aminopentanal) and Ag(I). The stoichiometry is i.e. [l-lysine]:[DPA] = 1:1. The reaction is of first order in [Os(VIII)] and [DPA] and is less than unit order in both [l-lys] and [alkali]. Addition of periodate has no effect on the reaction. Effect of added products, ionic strength, and dielectric constant of the reaction medium have been investigated. The oxidation reaction in alkaline medium has been shown to proceed via a Os(VIII)-l-lysine complex, which further reacts with one molecule of deprotonated DPA in a rate determining step followed by other fast steps to give the products. The main products were identified by spot test, IR, and GC-MS. The reaction constants involved in the different steps of the mechanism are calculated at different temperatures. The catalytic constant (KC) was also calculated at different temperatures. From the plots of lg KC versus 1/T, values of activation parameters with respect to the catalyst have been evaluated. The activation parameters with respect to slow step of the mechanism are computed and discussed and thermodynamic quantities are also determined. The active species of catalyst and oxidant have been identified.  相似文献   

7.
The electrochemical oxidation of ammonia was investigated on a Ni/Ni(OH)2 electrode prepared by potential cycling of a Ni electrode in 1 M NaClO4. It was found that oxidation of ammonia is strongly pH dependent and proceeds mainly at pH values above 7. This indicates that NH3 rather than NH4+ is oxidized on nickel electrodes. Oxidation of ammonia occurs in the potential region of Ni(II)/Ni(III) redox activity resulting in formation of a clear peak. Ni/Ni(OH)2 is not deactivated during ammonia oxidation even at high ammonia concentrations. A considerable fraction of the ammonia was oxidized to nitrate (11%), while the rest were gaseous nitrogen compounds. It is postulated that nitrogen was formed via a mechanism involving direct electron transfer from ammonia to the anode whereas the formation of nitrate involved oxygen transfer from water to an ammonia molecule.  相似文献   

8.
The modification of boron-doped diamond powder with metallic oxides using the sol–gel method to prepare high area and very stable electrodes for the methanol oxidation reaction is reported here. The catalyst clusters thus prepared are irregularly distributed on the BDD powder surface having sizes varying between 500 nm and 5 μm and formed by the agglomeration of many nanoparticles. Electrochemical studies in acid media demonstrate that the deposited particles have a good electrical contact with the diamond powder surface and high purity. Moreover, the use of the sol–gel method on a BDD powder substrate leads to the formation of metallic and metallic oxides deposits of the desired composition. The electrocatalyst composite prepared in this manner (Pt–RuOx/BDD powder) shows an excellent activity for methanol oxidation presenting an onset potential 20 mV lower than that observed on a Pt–Ru/C commercial catalyst, probably due to the ruthenium oxide contribution to the overall catalytic activity.  相似文献   

9.
Oxygen evolution reaction (OER) plays a pivotal role in water-splitting. Here, we report a facile method to synthesize multimetal supported on commercial carbon black via a time-saving microwave process. Crystalline FeNi3 nanoparticles homogeneously doped with Mo are formed via a microwave treatment and activated to metal oxyhydroxide in-situ during cyclic voltammetry test with overpotential of only 280 mV at 10 mA cm 2 for OER in alkaline electrolyte, outperforming RuO2. Our synthesis methodology is a promising alternative for large-scale production, delivering a valuable contribution to catalyst preparation and electrocatalytic water oxidation research.  相似文献   

10.
This paper reports about FeAgMo2O8 — a novel oxygen evolution catalyst material for secondary (rechargeable) metal–air batteries. Bifunctional air electrodes were made using FeAgMo2O8 as a charging catalyst for oxygen evolution reaction (OER) and silverized carbon black (Ag/C) was employed as a discharging catalyst for oxygen reduction reaction (ORR). Corresponding air electrodes were investigated using 10 M KOH as an electrolyte. At current densities between 20 and 50 mA per cm2 we observed discharging and charging voltages of 1.20 to 1.15 V and 1.96 to 2.05 V, respectively.  相似文献   

11.
Thermodynamic properties of Mg(NH2)2 and LiNH2 were investigated by measurements of NH3 pressure-composition isotherms (PCI). Van’t Hoff plot of plateau pressures of PCI for decomposition of Mg(NH2)2 indicated the standard enthalpy and entropy change of the reactions were ΔH° = (120 ± 11) kJ · mol?1 (per unit amount of NH3) and ΔS° = (182 ± 19) J · mol?1 · K?1 for the reaction: Mg(NH2)2  MgNH + NH3, and ΔH° = 112 kJ · mol?1 and ΔSo = 157 J · mol?1 · K?1 for the reaction: MgNH  (1/3)Mg3N2 + (1/3)NH3. PCI measurements for formation of LiNH2 were carried out, and temperature dependence of plateau pressures indicated ΔH° = (?108 ± 15) kJ · mol?1 and ΔS° = (?143 ± 25) J · mol?1 · K?1 for the reaction: Li2NH + NH3  2LiNH2.  相似文献   

12.
Iron phosphide films (Fe2P) grown in situ on stainless steel mesh (SSM) exhibit excellent electrocatalytic performance toward the glucose oxidation reaction (GOR) with robust durability. During GOR, the Fe2P could be further transformed into the oxidized Fe species with high catalytic activity. The integrated two-electrode glucose electrolytic cell utilizing Fe2P/SSM and Pt/C exhibited a cell voltage 300 mV lower than water splitting alone, indicating an efficient pathway for H2 production. These features suggest that the replacement of the sluggish oxygen evolution reaction (OER) with the thermodynamically more favourable GOR in the Pt/C ||Fe2P/SSM configuration is an attractive alternative for electrolytic H2 generation.  相似文献   

13.
The activity of the enzyme Iraqi Turnip peroxidase (ITP) is studied in a reverse microemulsion composed of chloroform, aqueous buffer, sodium dodecylsulfate (SDS) and alcohols of the homologous series 1-propanol to 1-hexanol through the measurements of absorbancy of the product of oxidation at the wavelength of 470 nm in the course of reactions. The ITP catalyzed reaction is the oxidation of guaiacol by hydrogen peroxide. Maximum enzyme activity was obtained at ω0 (molar ratio of water to surfactant) = 8. It was found that the oxidation reaction obeyed Michaelis–Menten kinetics in the investigated concentration rang (0.08–0.8 mM) of the substrate, and the Michaelis constant Km and maximal reaction rate Vm were determined. The enzyme inhibition caused by the alcohols in microemulsions is a consequence of both the solubility of the alcohols in the buffer and the flexibility of the interfacial film.  相似文献   

14.
《Polyhedron》2007,26(9-11):2021-2026
A novel bis(imino nitroxide)-substituted resorcinol 3H, that has two metal-binding sites with two pairs of the phenolate anion and the imino nitrogen atom, was prepared. The powdered sample of 3H showed an intramolecular ferromagnetic interaction (J/kB = +5 K) between two (imino nitroxide)s through a m-phenylene bridge and a weak intermolecular antiferromagnetic interaction (J/kB =  0.9 K). The reaction of 3H with copper acetate in methanolic ammonia was examined to give a hardly soluble Cu-complex that exhibited ferromagnetic behavior in relatively high temperatures (298–55 K).  相似文献   

15.
The synthesis of neodymium(III) bromide (NdBr3) by sintering brominating of neodymium oxide (Nd2O3) with ammonium bromide (NH4Br) was investigated. The influence of various synthesis parameters (temperature, contact time and stoichiometry) on the reaction yield was studied and optimized. The main interaction effects of the synthesis parameters on the reaction yield were also determined by a full 23 factorial designs with six replicates at the center point.This study showed that the optimum conditions for the synthesis of NdBr3 are following: contact time t = 60 min, stoichiometry in moles Nd2O3:NH4Br = 1:24 and temperature T = 400 °C. The reaction yield for these parameters was equal to 97.80%. The first order model was obtained to predict the reaction yield as a function of these three parameters. It was shown that all parameters have a significant positive influence on reaction yield. In addition it was pointed out also that the interaction effects between them are significant.  相似文献   

16.
The effect of electrochemically ageing hydrous nickel oxide films via slow repetitive potential multi-cycling across the main nickel (II/III) redox peak was investigated in an aqueous base environment using cyclic voltammetry and steady state polarisation curves in the oxygen evolution reaction (OER) region. Similarities between hydrous nickel oxide films and electroprecipitated ‘battery type’ nickel oxide were shown due to their similar change in redox and oxygen evolving properties as a result of film ageing. This ageing method was found to significantly enhance the OER performance of the hydrous nickel oxide electrode with the OER overpotential decreasing by 60 ± 2 mV and experiencing a 10 fold increase in OER rate for a fixed overpotential over that of an un-aged electrode. The OER turnover frequency for an aged electrode was found to be 1.16 ± 0.07 s 1 in comparison to 0.05 ± 0.003 s 1 for a hydrous nickel oxide electrode not subjected to ageing.  相似文献   

17.
We have obtained spinel-type Co3O4 and La-doped Co3O4 in the form of thin film on Ni, using microwave-assisted synthesis, which dramatically exhibit very low overpotentials for the oxygen evolution reaction (OER). Investigations have shown that at the apparent current density of 100 mA cm−2 in 1 mol dm−3 KOH at 25 °C, the new electrodes, Co3O4 (oxide loading = 3.4 ± 0.3 mg cm−2) and La-doped Co3O4 (oxide loading = 2.8 ± 0.4 mg cm−2), produce overpotentials, 235 ± 7 and 224 ± 8 mV, respectively. Such low overpotentials for the OER, to our knowledge, have not been found on any mixed oxide electrode material reported in literature till today. Small La addition improved the BET surface area and porosity of the oxide catalyst powder and reduced the charge transfer resistance for the OER on the electrode made of oxide powder.  相似文献   

18.
In this study, we investigated the effects of four inorganic anions (Cl, SO42−, H2PO4/HPO42−, and HCO3/CO32−) on titanium dioxide (TiO2)-based photocatalytic oxidation of aqueous ammonia (NH4+/NH3) at pH  9 and ∼10 and nitrite (NO2) over the pH range of 4–11. The initial rates of NH4+/NH3 and NO2 photocatalytic oxidation are dependent on both the pH and the anion species. Our results indicate that, except for CO32−, which decreased the homogeneous oxidation rate of NH4+/NH3 by UV-illuminated hydrogen peroxide, OH scavenging by anions and/or direct oxidation of NH4+/NH3 and NO2 by anion radicals did not affect rates of TiO2 photocatalytic oxidation. While HPO42− enhanced NH4+/NH3 photocatalytic oxidation at pH  9 and ∼10, H2PO4/HPO42− inhibited NO2 oxidation at low to neutral pH values. The presence of Cl, SO42−, and HCO3 had no effect on NH4+/NH3 and NO2 photocatalytic oxidation at pH  9 and ∼10, whereas CO32− slowed NH4+/NH3 but not NO2 photocatalytic oxidation at pH  11. Photocatalytic oxidation of NH4+/NH3 to NO2 is the rate-limiting step in the complete oxidation of NH4+/NH3 to NO3 in the presence of common wastewater anions. Therefore, in photocatalytic oxidation treatment, we should choose conditions such as alkaline pH that will maximize the NH4+/NH3 oxidation rate.  相似文献   

19.
The modification of hydrogen-terminated Si(1 1 1) wafer surfaces was reproduced by previously reported methods of the electrolysis of para-substituted benzendiazonium salts and the Grignard reaction with various alkyl moieties. The electrolysis methods formed partially ordered two-dimensional monolayers, which were however obscured by precipitation of by-products. The Grignard reaction deposited a monolayer of moieties of alkyl groups randomly arranged, which are more suitable for surface passivation. Aiming for the application to nanometer-scale monolayer patterning of the Si(1 1 1) wafer surface, the organic-monolayer-covered Si(1 1 1) surfaces were subjected to electron beam bombardment. After electron bombardment with ambient O2 or H2O introduced, adsorption of oxygen was observed within the beam spot. By immersing the bombarded specimen into an aqueous NiSO4+(NH4)2SO4 solution, the oxygen-deposited portions selectively included Ni atoms. This will be useful in constructing nanometer-scale metallic structures over Si wafer surfaces.  相似文献   

20.
Due to its cleanliness, fast energy cycle, and convenience of energy conversion, hydrogen has been regarded as the new energy source. Conventional process to produce hydrogen yield large amount of CO as byproduct. Moreover, the hydrogen storage and transportation have become the drawbacks in hydrogen economy. Thus, there has been increased interest in the hydrogen transportation medium as alternatives from the conventional process to produce and transport hydrogen. Ammonia has drawn worldwide attention as the most reliable hydrogen transportation medium. Through the decomposition of ammonia, hydrogen and nitrogen gas were produces as the byproduct without any CO or CO2 emission. In this experiment, the ore were introduced as the medium for ammonia decomposition. The ore were put into quartz tube reactor and were dehydrated at 400 °C for 1 hour, then hydrogen reduced for 2 hours before and undergone ammonia decomposition at 500-700 °C for 3 hours. The effects of temperature to the % conversion of ammonia decomposition were also studied. Ammonia decomposition at higher temperature gives higher conversion. As seen in the results, the NH3 conversion decreased with increasing time and the value after 3 hours of reaction increased in the sequence of 500 °C<600 °C< 700 °C. During ammonia decomposition, nitriding of iron occurred. The relation between temperature and the nitriding potential, KN is also investigated. The purpose of this study is to investigate the utilization of low-grade ore as medium for ammonia decomposition to produce hydrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号