首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conducting and stable poly (N-methylaniline) film was prepared by using the repeated potential cycling technique in aqueous solution containing N-methylaniline, sulfuric acid, and sodium dodecyl sulfate (SDS) at the surface of carbon paste electrode (CPE). The transition metal ions of Co(ІІ) were incorporated to the polymer by immersion of the modified electrode in 0.1 M cobalt chloride solution for 10 min. The electrochemical characterization of this modified electrode exhibits stable redox behavior of Co(ІІ)Co(ІІІ) and formation of insoluble oxide/hydroxide cobalt species on the CPE surface. The modified electrode showed well-defined and stable redox couples in alkaline aqueous solution. The modified electrode showed excellent electrocatalytic activity for oxidation of hydrogen peroxide. The response of modified electrode toward the H2O2 oxidation was examined using cyclic voltammetry, differential pulse voltammetry, square wave voltammetry, and chronoamperometry. This modified electrode has many advantages such as simple preparation procedure, good reproducibility, and high catalytic activity toward the hydrogen peroxide oxidation. Such characteristics were explored for the specific determination of hydrogen peroxide in cosmetics product sample, giving results in excellent agreement with those obtained by standard method.  相似文献   

2.
A simple and sensitive method was used to develop a novel sensor for determination of dacarbazine on the surface of multi-walled carbon nanotubes/CuFe2O4 nanoparticles modified carbon paste electrode (MWCNTs/CuFe2O4/CPE). Cyclic voltammetry, differential pulse voltammetry, chronoamperometry, and electrochemical impedance spectroscopy were used to investigate the electrochemical behavior of dacarbazine at the chemically modified electrode. According to the results, MWCNTs/CuFe2O4/CPE showed high electrocatalytic activity for dacarbazine oxidation, producing a sharp oxidation peak current at about +0.80 vs. Ag/AgCl reference electrode at pH 5.0. The peak current was linearly dependent on dacarbazine concentration over the range of 0.10–76.0 μmol L–1 with the detection limit (3σ) of 0.08 μmol L?1. In addition, chronoamperometry was also used to determine diffusion coefficient of dacarbazine at MWCNTs/CuFe2O4/CPE.  相似文献   

3.
In this work, an aqueous solution of sodium dodecylsulfate (SDS) surfactant is used as an additive for electropolymerization of N,N-dimethylaniline (DMA) onto carbon paste electrode (CPE), which is investigated as a novel matrix for deposition of nickel. The electrochemical oxidation of formaldehyde is studied at the surface of this modified electrode. The electrooxidation of formaldehyde was found to be more efficient on CPE modified with Ni/Poly(N,N-Dimethylaniline) (SDS), Ni/PDMA (SDS), than deposition Ni on CPE in alkaline solution. The electrochemical behavior and electrocatalytic activity of the electrode were studied using cyclic voltammetry and chronomethods studies. Also, the transfer second-order rate constant (k = 5.5 × 103 cm3 mol?1 s?1) between formaldehyde and nickel hydroxide was calculated. Moreover, in order to optimize of electrode and variables for efficient performance of Ni/PDMA (SDS)/CPE towards formaldehyde oxidations, the effect of various parameters such as number of potential cycles for preparation of polymer, nickel and formaldehyde concentration and accumulation time have been investigated.  相似文献   

4.
In the present work, the aluminum electrode surface was modified with a thin layer of palladium by dipping its polished surface in a 25% ammonia solution of PdCl2. The electrocatalytic ability of the modified electrode towards the paracetamol (PCT), ascorbic acid (AA), and codeine (CO) oxidation was investigated using cyclic voltammetry, chronoamperometry. The number of electrons for rate-determining step and diffusion coefficient of PCT, AA, and CO were determined. The electro-oxidation pathway and kinetics, including transfer coefficient α and diffusion coefficient D, are estimated. The results indicated that the simultaneous voltammetry of the three compounds was possible in a mixture solution.  相似文献   

5.
In this paper, the electrochemical behavior of a carbon paste electrode modified with CdO nanoparticles as a potential electrocatalyst for the reduction of trichloroacetic acid (TCAA) was investigated using cyclic voltammetry and double‐potential step chronoamperometry. The modified electrode showed a great enhancement in cathodic peak current with respect to reduction of TCAA in acidic aqueous solution. Using this increment, a quantitative method was developed for the determination of TCAA in aqueous solution. The detection limit and linear dynamic range of TCAA are 2.3×10?6 M and 2.3×10?4–3×10?6 M, respectively.  相似文献   

6.
In this study, a simple, sensitive and low-cost iodate electrochemical sensor based on graphenized pencil lead electrode (GPLE) modified with Ag nanoparticles (AgNPs) was presented. The GPLE was simply prepared via electrochemical exfoliation of pencil lead electrode (PLE) by applying an optimized potential in acidic media. Afterward, silver nanoparticles were electrochemically deposited on the surface of GPLE using chronoamperometry technique. The fabricated electrode was carefully characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) techniques. Electrochemical behavior and also the electrocatalytic performance of the modified electrode toward the reduction of iodate were studied in details using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. The fabricated sensor responds efficiently to iodate over the concentration range of 0.05 to 75 mM with a detection limit of 0.017 mM and sensitivity of 0.26 µA µM?1 cm?2. Remarkably enhanced electrocatalytic performance of the modified electrode was ascribed to the synergistic effect of graphene-like nanostructures with high surface to volume ratio, excellent conductivity and also the excessive electrocatalytic behavior of silver nanoparticles. The modified electrode was successfully employed for the determination of iodate in table and sea salt samples.  相似文献   

7.
3-(4'-Amino-3'-hydroxy-biphenyl-4-yl)-acrylic acid, was synthesized and used to construct a modified-graphene oxide nano sheets paste electrode. The electro-oxidation of isoproterenol at the surface of the modified electrode was studied using cyclic voltammetry, chronoamperometry, and square wave voltammetry. Under the optimized conditions, the square wave voltammetric peak currents of isoproterenol increased linearly with isoproterenol concentrations in the range of 2.5 × 10–8 to 2.0 × 10–5 M and detection limit of 12 nM was obtained for isoproterenol. Finally this modified electrode was used for determination of isoproterenol in some real samples.  相似文献   

8.
A nanoporous Pt particles‐modified Ti (nanoPt/Ti) electrode was prepared through a simple hydrothermal method using aqueous H2PtCl6 as a precursor and formaldehyde as a reduction agent. The nanoPt/Ti electrode was then modified with limited amounts of tin particles generated by cyclic potential scans in the range of ?0.20 to 0.50 V in a 0.01 mol·L?1 SnCl2 solution, to synthesize a Sn‐modified nanoporous Pt catalyst (Sn/nanoPt/Ti). Electroactivity of the nanoPt/Ti and Sn/nanoPt/Ti electrodes towards formaldehyde oxidation in a 0.5 mol·L?1 H2SO4 solution was evaluated by cyclic voltammetry and chronoamperometry. Electrooxidation of formaldehyde on the nanoPt/Ti electrode takes place at a potential of 0.45 V and then presents high anodic current densities due to the large real surface area of the nanoPt/Ti electrode. The formaldehyde oxidation rate is dramatically increased on the Sn/nanoPt/Ti electrode at the most negative potentials, where anodic formaldehyde oxidation is completely suppressed on the nanoPt/Ti electrode. Chronoamperogramms (CA) of the Sn/nanoPt/Ti electrode display stable and large quasi‐steady state current densities at more negative potential steps. Amperometric data obtained at a potential step of 100 mV show a linear dependence of the current density for formaldehyde oxidation upon formaldehyde concentration in the range of 0.003 to 0.1 mol·L?1 with a sensitivity of 59.29 mA·cm?2 (mol·L?1)?1. A detection limit of 0.506 mmol·L?1 formaldehyde was found. The superior electroactivity of the Sn/nanoPt/Ti electrode for formaldehyde oxidation can be illustrated by a so‐called bifunctional mechanism which is involved in the oxidation of poisoning adsorbed CO species via the surface reaction with OH adsorbed on neighboring Sn sites.  相似文献   

9.
A kind of inorganic‐organic hybrid 18‐molybdodiphosphate nanoparticles ([(C4H9)4N]6P2Mo18Q62·4H2O) was firstly used as a bulk‐modifier to fabricate a three‐dimensional chemically modified carbon paste electrode (CPE) by direct mixing. The electrochemical behavior of the solid nanoparticles dispersed in the CPE in acidic aqueous solution was characterized by cyclic and square‐wave voltammetry. The hybrid 18‐molybdodiphosphate nanoparticles bulk‐modified CPE (MNP‐CPE) displayed a high electrocatalytic activity towards the reduction of nitrite, bromate and hydrogen peroxide. The remarkable advantages of the MNP‐CPE over the traditional polyoxometalates‐modified electrodes are their excellent reproducibility of surface‐renewal and high stability owing to the insolubility of the hybrid 18‐molybdodiphosphate nanoparticles.  相似文献   

10.
The electrochemical behavior of D ‐penicillamine (D ‐PA) studied at the surface of ferrocene carboxylic acid modified carbon paste electrode (FCAMCPE) in aqueous media using cyclic voltammetry and double step potential chronoamperometry. It has been found that under optimum condition (pH 7.00), the oxidation of D ‐PA at surface of such an electrode is occurred about 420 mV less positive than that an unmodified carbon paste electrode (CPE). The catalytic oxidation peak current was linearly dependent on the D ‐PA concentration and a linear calibration curve was obtained in the ranges 7.5×10?5 M – 1.0×10?3 M and 6.5×10?6 M?1.0×10?4 M of D ‐PA with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods respectively. The detection limits (3σ) were determined as 6.04×10?5 M and 6.15×10?6 M. This method was also used for the determination of D ‐PA in pharmaceutical preparation (capsules) by standard addition method.  相似文献   

11.
Poly(3,4‐ethylenedioxythiophene) (PEDOT) film was prepared on glassy carbon electrode from 0.1 M LiClO4 aqueous solution containing 3,4‐ethylenedioxythiophene (EDOT) monomer and hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD), by multiple scan cyclic voltammetry. The effect of oxidation potentials on electropolymerization of EDOT was examined by chronoamperometry and cyclic voltammetric techniques. The results of potentiostatic experiments show that optimum potential range to obtain compact stable film was 0.9 to 1.05 V (vs. Ag/AgCl). At higher positive potential, i.e. above 1.05 V, polymer growth was hindered by passivation effect. The PEDOT film exhibited a strong absorption at 550 nm in the UV‐vis region and also a multicolor electrochromism in different buffer solutions (sky blue‐purple red). Cyclic voltammetric features of PEDOT‐coated electrode in pure supporting electrolyte suggested that charge transfer of the film resembles that of surface‐confined redox species. Finally, the electrocatalytic behavior of PEDOT‐modified electrode was tested towards oxidation of sulfur oxoanions and nitrite using cyclic voltammetry.  相似文献   

12.
In this study, a grafted polymer (GP) with ZnO nanoparticles (GP/ZnO NPs) was attached on the surface of glassy carbon electrode (GCE), in order to produce a new modified electrode (GP/ZnO NPs-GCE). The gamma irradiation method was used to grafted polystyrene (polymer) with acrylonitrile (monomer), while slow evaporation process was used to prepare the new modified electrode. The cyclic voltammetry (CV) of K4[Fe(CN)6] was used to study the electrochemical properties GP/ZnO NPs-GCE. The peak separation (ΔEpa-c) was 500 mV between the redox peaks of Fe(II)/Fe(III) in an aqueous solution of 1 M KCl and the current ratio of redox current peaks (Ipa/Ipc) was ≈ 1 for the modified electrode. This indicated that the modified electrode has s good reversibility and conductivity, wherefore; it was applied in the voltammetric filed. It was found that the modified electrode GP/ZnO NPs-GCE have a reasonable solubility and stability at various pH medium. Additionally, the sensitivity of the electrochemical analysis by cyclic voltammetric (CV) method is extensively subjected to the pH medium and the scan rate (SR). A couple of redox current peaks of K4[Fe(CN)6] in KCl solution was observed with a reversible process: Fe3+/Fe2+. Finally a good diffusion coefficient of electroactive species (D) for the new modified electrode was found in this study by chronoamperometry method using Cottrell equation.  相似文献   

13.
A novel titanium-supported nickel electrode (Ni/Ti) is fabricated by a simple hydrothermal process using hydrazine hydrate as a reduction agent. Its electrocatalytic activity towards cyclohexanol oxidation has been investigated by cyclic voltammetry (CV), chronoamperometry (CA), quasi-steady state polarization and electrochemical impedance spectroscopy (EIS). Effects of various parameters such as potential scan rate and cyclohexanol concentration on the electro-oxidation of cyclohexanol are investigated. Results show that the Ni/Ti electrode behaves as an efficient catalyst for the electro-oxidation of cyclohexanol in basic media and its electrocatalytic activity towards cyclohexanol oxidation is higher than a nickel oxyhydroxide modified nickel electrode (NOMN). It is confirmed that during the anodic potential sweep the electro-oxidation of cyclohexanol follows the formation of NiOOH on the electrode surface and is then catalysed by NiOOH. The rate-determining step for cyclohexanol oxidation is the reaction between the high oxidation state nickel (Ni3+) and the adsorbed cyclohexanol on the surface of the Ni/Ti.  相似文献   

14.
Pt‐nanoparticles were synthesized and introduced into a carbon paste electrode (CPE), and the resulting modified electrode was applied to the anodic stripping voltammetry of copper(II) ions. The synthesized Pt‐nanoparticles were characterized by cyclic voltammetry, scanning electron microscopy and X‐ray photoelectron spectroscopy techniques to confirm the purity and the size of the prepared Pt‐nanoparticles (ca. 20 nm). This incorporated material seems to act as catalysts with preconcentration sites for copper(II) species that enhances the sensitivity of Cu(II) ions to Cu(I) species at a deposition potential of ?0.6 V in an aqueous solution. The experimental conditions, such as, the electrode composition, pH of the solution, pre‐concentration time, were optimized for the determination of Cu(II) ion using as‐prepared electrode. The sensitivity changes on the different binder materials and the presence of surfactants in the test solution. The interference effect of the coexisted metals were also investigated. In the presence of surfactants, especially TritonX‐100, the Cu(II) detection limit was lowered to 3.9×10?9 M. However, the Pt‐nanoparticle modified CPE begins to degrade when the period of deposition exceeds to 10 min. Linear response for copper(II) was found in the concentration range between 3.9×10?8 M and 1.6×10?6 M, with an estimated detection limit of 1.6×10?8 M (1.0 ppb) and relative standard deviation was 4.2% (n=5).  相似文献   

15.
A carbon paste electrode (CPE) modified with ferrocene carboxylic acid (FcCA) and TiO2 nanoparticles was constructed by incorporating TiO2 nanoparticles and ferrocene carboxylic acid into the carbon paste matrix.The electrochemical behavior of captopril (CAP) at the surface of the modified electrode was investigated using electroanalytical methods.The modified electrode showed excellent electrocatalytic activity for the oxidation of CAP in aqueous solutions at physiological pH values.Cyclic voltammetric curves showed that the oxidation of CAP at the surface of the modified electrode reduced its overpotential by more than 290 mV.The modified electrode was used for detecting captopril using cyclic voltammetry and square wave voltammetry techniques.A calibration curve in the range of 0.03 to 2400μmol/L was obtained that had a detection limit of 0.0096 μmol/L (3σ) under the optimized conditions.The modified electrode was successfully used for the determination of captopril in pharmaceutical and biological samples.  相似文献   

16.
A very stable electroactive film of catechin was electrochemically deposited on the surface of activated glassy carbon electrode. The electrochemical behavior of catechin modified glassy carbon electrode (CMGCE) was extensively studied using cyclic voltammetry. The properties of the electrodeposited films, during preparation under different conditions, and the stability of the deposited film were examined. The charge transfer coefficient (α) and charge transfer rate constant (k s) for catechin deposited film were calculated. It was found that the modified electrode exhibited excellent electrocatalytic activity toward hydrazine oxidation and it also showed a very large decrease in the overpotential for the oxidation of hydrazine. The CMGCE was employed to study electrocatalytic oxidation of hydrazine using cyclic voltammetry, rotating disk voltammetry, chronoamperometry, amperometry and square-wave voltammetry as diagnostic techniques. The catalytic rate constant of the modified electrode for the oxidation of hydrazine was determined by cyclic voltammetry, chronoamperometry and rotating disk voltammetry and was found to be around 10−3 cm s−1 . In the used different voltammetric methods, the plot of the electrocatalytic current versus hydrazine concentration is constituted of two linear segments with different ranges of hydrazine concentration. Furthermore, amperometry in stirred solution exhibits a detection limit of 0.165 μM and the precision of 4.7% for replicate measurements of 40.0 μM solution of hydrazine.  相似文献   

17.
Poly(o-toluidine) (sodium dodecyl sulfate) (POT(SDS)) film was electrosynthesized on carbon paste electrode (CPE) by using the cyclic voltammetry technique in aqueous solution containing o-toluidine (OT), sulfuric acid and SDS. Then, copper oxide was incorporated by immersion of POT(SDS)/CPE in a solution of copper sulfate and using constant potential method. Then, the electrochemical characterization of the modified electrode is presented in alkaline solution. For the first time, electrochemical behaviour of amoxicillin (AMX) at the Cu/POT(SDS)/CPE has been investigated using cyclic voltammetry (CV) and chronoamperometric method. The experimental results suggest that the modified electrode exhibits electrocatalytic effect on the oxidation of AMX resulting in a marked enhancement of the anodic peak current response. Under the selected conditions, the anodic peak current was linearly dependent on the concentration of AMX in the range 80–200 and 5–150 μM with CV and amperometric method, respectively. The detection limits (2δ) were also estimated to be 60 and 3 μM. Some kinetic parameters such as the transfer second-order rate constant (k = 4.9 × 106 cm3 mol–1 s–1) of AMX was calculated. Therefore, this modified electrode was a simple, rapid and new electrode to determine AMX in pharmaceutical preparations.  相似文献   

18.
A gold nanoparticles modified carbon paste electrode (GN‐CPE) was used as a highly sensitive electrochemical sensor for determination of tyrosine (Tyr), dopamine (DA) and uric acid (UA) in phosphate buffer solution (PBS). The study and measurements were carried out by using cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chronoamperometry methods. In DPV, the GN‐CPE could separate the oxidation peak potentials of DA and UA present in the same solution, though at the unmodified CPE the peak potentials were indistinguishable. The prepared electrode showed voltammetric responses with high sensitivity and selectivity for Tyr, DA and UA in optimal conditions, which makes it very suitable for simultaneous determination of these compounds. The calibration curves for Try, DA and UA were linear for the concentrations of each species. The proposed voltammetric approach was also applied to the determination of Tyr concentration in human serum as a real sample.  相似文献   

19.
In this work, a modified carbon paste electrode consisting of Nickel dispersed in poly(ortho-aminophenol) was used for electrocatalytic oxidation of methanol in alkaline solution. A carbon paste electrode bulk modified with o-aminophenol was used for polymer preparation by cyclic voltammetry method; then, Ni(II) ions were incorporated by immersion of the modified electrode in 1 M Ni(II) ion solution at open circuit. The electrochemical characterization of this modified electrode exhibits stable redox behavior of the Ni(III)–Ni(II) couple. Electrocatalytic oxidation of methanol on the surface of modified electrode was investigated with cyclic voltammetry and chronoamperometry methods, and the dependence of the oxidation current and shape of cyclic voltammograms on methanol concentration and scan rate were discussed. Also, long-term stability of modified electrode for electrocatalytic oxidation of methanol was investigated.  相似文献   

20.
Functionalized poly‐N,N‐dimethylaniline film was prepared by adsorption of ferrocyanide onto the polymer forming at the surface of carbon paste electrode (CPE) in aqueous solution by using potentiostatic method. The electrocatalytic ability of poly‐N,N‐dimethylaniline/ferrocyanide film modified carbon paste electrode (PDMA/FMCPE) was demonstrated by oxidation of cysteamine. Cyclic voltammetry and chronoamperometry techniques were used to investigate this ability. Results showed that pH 7.00 is the most suitable for this purpose. It is found that the catalytic reaction rate constant, (kh), is equal to 2.142×103 M?1 s?1 by the data of chronoamperometry. The catalytic reduction peak current was linearly dependent on the cysteamine concentration and the linearity range obtained was 8.00×10?5 M–1.14×10?2 M. Detection limit was determined 7.97×10?5 M (2σ). This method has been successfully employed for quantification of cysteamine in real sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号