首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
过渡金属电荷转移配合物的电荷分离是光能转化为电能的光物理过程,与配合物的电子结构密切相关.采用从头算方法探索了双核Au(Ⅰ)配合物,cis-[Au2(SHCH2PH2)2]2 (1),cis-[Au2(SHCH2S)2](2)和cis-[Au2(PH2CH2S)2](3)的电荷转移性质.采用MP2计算得到基态的Au(Ⅰ)—Au(Ⅰ)距离分别为0.2972,0.2888和0.2903 nm,表明Au(Ⅰ)之间存在弱吸引作用;电子激发使得配合物2和3的金属间的距离缩短了约0.016 nm,而配合物1仅增长了0.002 nm.CIS方法预测配合物1~3的3A激发态分别产生383,463和422 nm最低能发射,具有金属中心(Metal-centered,MC)跃迁和分子内电荷转移(Intramolecular Charge Transfer,ICT)的混合性质.  相似文献   

2.
用从头算方法研究[Au(i-mnt)]22-(i-mnt=i-marononitriledithiolate)的电子吸收和磷光发射性质,利用MP2和CIS方法分别优化了[Au(i-mnt)]22-基态和激发态几何结构.计算的基态Au(Ⅰ)—Au(Ⅰ)键长为0.2825nm,表明Au(Ⅰ)之间存在弱吸引作用.采用SCRF方法中IPCM模型模拟配合物在乙氰溶液中的行为,计算得到的最大吸收波长为315.5nm,指认X1Ag→A1Au来源于i-mnt配体内电荷转移跃迁.在436.2nm处得到具有B3Au→1Ag跃迁的磷光发射,指认为i-mnt配体内电荷转移和金属到配体电荷转移跃迁,与500nm乙氰溶液的发射相对应,为金属修饰的有机配体发光机制.  相似文献   

3.
用MP2和CIS方法分别优化了H3PAuPh(a)、对位(H3PAu)2C6H4(b)和间位(H3PAu)3C6H3(c)的基态和激发态结构. 计算结果表明, [Au(PH3)]+的引入使Au(Ⅰ)配合物的苯环上的电子云密度降低, 削弱了苯基内C—C键的成键作用. 计算得到配合物a~c的最低能量磷光发射分别为443, 461和429 nm, 均属于苯基为π*→π跃迁本质, 并伴有Au(6p)→π(Ph)和Au(6p)→Au(5d)电荷转移性质. 与苯的最低能量磷光发射(413 nm)相比揭示了配合物a~c的发光过程是[Au(PH3)]+修饰的π*→π发光机制.  相似文献   

4.
用从头计算法研究H3PAuC≡CPh(a), H3PAu(C≡C-1,4-C6H4)Ph(b)和H3PAu(C≡C-1,4-C6H4)C≡CPh(c) 3种Au(Ⅰ)配合物的磷光发光性质, 使用MP2和CIS方法分别优化配合物的基态和激发态的几何结构. 计算结果表明, 激发态的电子跃迁减弱了Au与配体的成键作用. 由计算得出3种Au(Ⅰ)配合物的最低能量磷光发射光谱分别为530, 610和615 nm, 皆由A3A′→1A′产生, 属于Au(6p)→C(2p)的电荷转移(MLCT)修饰下的pπ*(C≡C, )→pπ(C≡C, )跃迁本质, 并伴有Au(6p)→Au(5d)的金属中心电荷转移(MCCT)性质. 随着分子增长, 其激发态轨道中Au的p轨道成分减少, 相应的最低能量磷光发射的波长红移.  相似文献   

5.
采用MP2和DFT方法优化一系列d10-d8配合物, [MM’(CN)2(PH2CH2PH2)2]+[M=AuI, M′=PtII (1), PdII (2), NiII (3); M’=PtII, M=AgI (4), CuI (5)]的基态结构, 其中BH&;H方法得到的金属间距离最接近相应的实验值. 对于经典Au-Pt配合物: 使用多种方法优化[AuPt(CN)2(PMe2CH2PMe2)2]+(1Me)的结构以验证取代基近似的合理性, 采用单激发组态相互作用方法优化了1的两个低能三重激发态并且考查了环境效应(抗衡离子和溶剂分子)对其较低能激发态发射光谱的影响. 计算结果显示1的两个低能三重激发态分别产生399和234 nm发射, 属于金属中心(Metal-centered, MC)跃迁和分子内电荷转移(Intramolecular Charge Transfer, ICT)的混合性质; 由于电子激发到成键轨道, 使得激发态金属间距离相对基态变短; 环境效应使得较低能的MC/ICT激发态的发射光谱红移, 如1•ClO的发射在473 nm处, 与实验测得[AuPt(CN)2(PCy2CH2PCy2)2]•ClO4的451 nm固体发射相对应.  相似文献   

6.
合成了一种新的环状金属配体4-甲氧甲酰基-6-(4-甲基苯基)-2,2’-联吡啶(HL)及它的单核与双核Pt(Ⅱ)配合物[Pt(L)PPh3](ClO4)(1)与[Pt2L2(μ-dppm)](ClO4)2(2)(dppm=二(二苯基磷)-甲烷),并研究了它们的结构及光物理性质.配合物2的晶体结构分析表明,中心金属离子Pt(Ⅱ)呈扭曲平面正方形构型,桥配体dppm连接两个金属中心,0.3375 nm的Pt——Pt距离表明双核配合物中存在金属-金属相互作用.两配合物在~450 nm处的肩峰归属于金属到配体的电荷转移(MLCT)吸收,在固体及溶液中均观测到强烈的光致磷光发射.配合物1在固态时620 nm的低能发射归属为3(π-π)跃迁,并暗示配合物1晶体结构中存在分子间配体-配体相互作用,然而在溶液中仅观察到3MLCT发射光谱,但配合物2在固态及溶液中都观察到明显的金属和金属相互作用到配体的电荷转移(3MMLCT)发射.  相似文献   

7.
合成了含有冠醚环化二硫烯的双核Au(I)配合物[(30-C2S4)Au2(PPh3):](1),[(40-C2S4)Au2·(PPh3)2](2),[(30一C6-S8)Au2(Pph3)2](3)和[(40-C6-S8)Au2(PPh3)2](4)以及富硫配合物[(btdt)Au2·(PPh3)2](5).通过x射线...  相似文献   

8.
合成了两个在空气中稳定的Au(Ⅰ )和Cu(Ⅰ )配合物 ,并运用元素分析、红外光谱、荧光光谱和X射线单晶衍射结构表征 ,[Au2 (PPh3 ) 2 (μ 4 ,4′ bpy) ](ClO4 ) 2 (1) (4 ,4′ bpy为 4,4′ 联吡啶 ) ,单斜晶系 ,空间群P2 1c,晶胞参数a=1.2 2 5 5 (4 )nm ,b=0 .9973(3)nm ,c=1.85 0 6 (6 )nm ,β =10 1.732 (5 )°,V =2 .2 145 (11)nm3 ,Z =4,最终偏离因子R =0 .0 430 ,wR =0 .0 937.[Cu2 (PPh3 ) 4(CH3 CN) 2 (μ 4 ,4′ bpy) ](BF4 ) 2 (2 ) ,单斜晶系 ,空间群P2 1c,晶胞参数a =1.34 6 3(3)nm ,b =1.46 81(3)nm ,c =2 .0 6 0 8(4 )nm ,β =10 0 .387(4 )° ,V =4.0 0 6 6 (13)nm3 ,Z =2 ,最终偏离因子R =0 .0 45 0 ,wR =0 .116 3.两个双核配合物都是利用 4,4′ 联吡啶桥联配体 ,形成直线结构 ,直线的两端以PPh3 或CH3 CN为端基 .Au(Ⅰ )为 2配位 ,Cu(Ⅰ )为 4配位 .两个配合物均具有光致发光特性 ,其中配合物 1发光来自MLCT激发态 ,而配合物 2则是受配位金属影响的配体内部发光 .  相似文献   

9.
摘要 在水和甲醇混合溶液中合成了3个配合物[Zn(DNBC)2(Im)2](1), [Cu(DNBC)2(Im)(H2O)](2) [Co1.5(DNBC)4(Im)(CH3OH)(H2O)2](3) (DNBC = 3,5-二硝基苯甲酸, Im = 咪唑), 并进行了常规表征,单晶X-射线衍射测定了3个配合物的晶体结构。结果表明,配合物1采用四配位,且形成扭曲的四面体形式,通过分子间氢键及范德华力形成了三维网状的超分子框架结构。配合物2中金属铜原子采用五配位,分别与四个氧原子和一个咪唑氮原子配位,形成一个扭曲的四方锥体,而且通过羧基和硝基与金属铜连接形成一个一维Z字链的超分子链状结构。配合物3的空间群为p2(1)/n, a = 1.20876(7)nm, b = 2.63287(16)nm, c = 1.36466(9)nm, V = 4.3045(5)nm3, Z = 4, F(000) = 2166, Co…Co原子之间的距离为0.3587nm。在配合物3中,由八面体配位的Co(II)离子与μ-OH2组成的三核金属钴通过氢键与相邻的三核金属钴连接,Co(II)离子与μ-OH2形成一维Z字链,并且配合物的空腔中包含未配位的咪唑和甲醇分子。配合物3的磁学性质测试表明,三核金属Co(II)之间存在着很好的反铁磁交换作用。  相似文献   

10.
本文研究了1,2-双烷基(芳基)硫代乙烷(L)——1,2-双(正辛基硫代)乙烷(BOTE)、1,2-双(正戊基硫代)乙烷(BATE)、1,2-双(苯基硫代)乙烷(BPTE)对金的萃取及其配合物的性质.双烷基硫代乙烷对金具有很强的萃取能力,可定量地萃取金.在溶液中,当[L]≥[Au~(3 )]时,Au与L形成1∶1Au-L配合物,而在[L]<[Au~(3 )]时,则为2∶1Au-L配合物.固态时,Au(Ⅲ)、Au(Ⅰ)与L只形成2∶1配合物(AuCl_3)_2L和AaCl)_2L.讨论了BOTE和BATE与Au(Ⅲ)、Au(Ⅰ)配合物的IR和~1H NMR谱.IR谱证实了关于Au(Ⅰ)配合物为线型结构的推断,并借助金原子的交换机理,解释了配合物与配位体的~1H NMR谱外观相似的原因.详细分析了Au(Ⅲ)配合物低频区的IR数据,提出了配合物有离子型结构的新证据.  相似文献   

11.
合成了3个2-[(二苯基膦基)甲基]吡啶(L)铜(Ⅰ)配合物:Cu(L)2(BF4)(a)、Cu(L)(PPh3)2(BF4)(b)和Cu(L)(POP)(BF4)(c)(POP为双[(2-二苯膦基)苯基]醚),其组成和结构分别经1H NMR、31P NMR、元素分析及晶体结构分析确证。 分子中,中心铜(Ⅰ)离子均为扭曲的四面体配位构型。 在除气的二氯甲烷溶液中,配合物均出现261~274 nm强π-π*吸收,未见明显的Cu→L电荷转移(MLCT)跃迁吸收。 配合物的薄膜样品发射蓝绿光,最大发射峰分别在515、476和481 nm处,光致发光效率分别为16.0%、12.9%和7.0%。 以聚乙烯咔唑(PVK)与配合物b为发光层的多层电致发光器件,当电流密度为1.0×10-3 A/cm2时,电致发光的电流效率为0.36 cd/A,最大亮度为217 cd/m2。  相似文献   

12.
Electronic structures and spectroscopic properties of the binuclear head-to-tail [Au(2)(PH(2)CH(2)SH)(2)](2+) (1) complex were investigated by ab initio calculations. The solvent effect of the complex in the acetonitrile solution was taken into account by the weakly solvated [Au(2)(PH(2)CH(2)SH)(2)](2+).(MeCN)(2) (2) moiety in the calculations. The ground-state geometries of 1 and 2 were fully optimized by the MP2 method, while their excited-state structures were optimized by the CIS method. Aurophilic attraction apparently exists between the two Au(I) atoms in the ground state and is strongly enhanced in the excited state. A high-energy phosphorescent emission was calculated at 337 nm for 1 in the absence of the interactions with solvent molecules and/or counteranion in solid state; however the lowest-energy emission of 2 was obtained at 614 nm with the nature of (3)A(u)(s(sigma)) --> (1)A(g)(d(sigma)) (metal-centered, MC) transition. The coordination of acetonitrile to the gold atom in solution results in a dramatic red shift of emission wavelength. The investigations on the head-to-tail [Au(2)(PH(2)CH(2)SCH(3))(2)](2+) (5) and [Au(2)(PH(2)CH(2)SCH(3))(2)](2+).(MeCN)(2) (6) moieties indicate that the CH(3) substituent on the S atom causes blue shifts of emission wavelength for 5 and 6 with respect to 1 and 2. By comparison between Au(I) thioether 1 and head-to-tail Au(I) thiolate [Au(2)(PH(2)CH(2)S)(2)] (7), it is concluded that the S-->Au dative bonding results in evidently different transition characteristics from the S-Au covalent bonding in the Au(I) thioether/thiolate complexes.  相似文献   

13.
The reaction of the digold(I) diacetylide [(AuCCCH2OC6H4)2CMe2] with diphosphane ligands can lead to formation of either macrocyclic ring complexes or [2]catenanes by self-assembly. This gives an easy route to rare organometallic [2]catenanes, and the effect of the diphosphane ligand on the selectivity of self-assembly is studied. With diphosphane ligands Ph2P(CH2)xPPh2, the simple ring complex [Au2[(CCCH2OC6H4)2CMe2](Ph2P(CH2)xPPh2)] is formed selectively when x = 2, but the [2]catenanes [Au2[(CCCH2OC6H4)2CMe2](Ph2P(CH2)xPPh2)]2 are formed when x = 4 or 5. When x = 3, a mixture of the simple ring and [2]catenane is formed, along with the "double-ring" complex, [Au4[(CCCH2OC6H4)2CMe2]2(Ph2P(CH2)3PPh2)2] and a "hexamer" Au2[(CCCH2OC6H4)2CMe2](Ph2P(CH2)3PPh2)]6] whose structure is not determined. A study of the equilibria between these complexes by solution NMR techniques gives insight into the energetics and mechanism of [2]catenane formation. When the oligomer [(AuCCCH2OC6H4)2CMe2] was treated with a mixture of two diphosphane ligands, or when two [2]catenane complexes [[Au2[(CCCH2OC6H4)2CMe2](diphosphane)]2] were allowed to equilibrate, only the symmetrical [2]catenanes were formed. The diphosphanes Ph2PCCPPh2, trans-[Ph2PCH=CHPPh2] and (Ph2PC5H4)2Fe give the corresponding ring complexes [Au2[(CCCH2OC6H4)2CMe2](diphosphane)], and the chiral, unsymmetrical diacetylide [Au2[(CCCH2OC6H4C(Me)(CH2CMe2)C6H3OCH2CC)] gives macrocyclic ring complexes with all diphosphane ligands Ph2P(CH2)xPPh2 (x = 2-5).  相似文献   

14.
Nitrosylruthenium complexes containing 2,2':6',2"-terpyridine (terpy) have been synthesized and characterized. The three alkoxo complexes trans-(NO, OCH3), cis-(Cl, OCH3)-[RuCl(OCH3)(NO)(terpy)]PF6 ([2]PF6), trans-(NO, OC2H5), cis-(Cl, OC2H5)-[RuCl(OC2H5)(NO)(terpy)]PF6 ([3]PF6), and [RuCl(OC3H7)(NO)(terpy)]PF6 ([4]PF6) were synthesized by reactions of trans-(Cl, Cl), cis-(NO, Cl)-[RuCl2(NO)(terpy)]PF6 ([1]PF6) with NaOCH3 in CH3OH, C2H5OH, and C3H7OH, respectively. Reactions of [3]PF6 with an acid such as hydrochloric acid and trifluoromethansulforic acid afford nitrosyl complexes in which the alkoxo ligand is substituted. The geometrical isomer of [1]PF6, trans-(NO, Cl), cis-(Cl, Cl)-[RuCl2(NO)(terpy)]PF6 ([5]PF6), was obtained by the reaction of [3]PF6 in a hydrochloric acid solution. Reaction of [3]PF6 with trifluoromethansulforic acid in CH3CN gave trans-(NO, Cl), cis-(CH3CN, Cl)-[RuCl(CH3CN)(NO)(terpy)]2+ ([6]2+) under refluxing conditions. The structures of [3]PF6, [4]PF6.CH3CN, [5]CF3SO3, and [6](PF6)2 were determined by X-ray crystallograpy.  相似文献   

15.
Xu HB  Zhang LY  Ni J  Chao HY  Chen ZN 《Inorganic chemistry》2008,47(22):10744-10752
Reaction of polymeric gold(I) acetylide species (bpyC[triple bond]CAu)n (bpyC[triple bond]CH = 5-ethynyl-2,2'-bipyridine) with diphosphine ligands Ph2P(CH2)nPPh2 (n = 2-6) or 1,1'-bis(diphenylphosphino)-ferrocene (dppf) in dichloromethane induces isolation of binuclear gold(I) complexes (bpyC[triple bond]CAu)2{mu-Ph2P(CH2)nPPh2} or (bpyC[triple bond]CAu)2(mu-dppf). Complexation of Ln(hfac)3 (hfac = hexafluoroacetylacetonate, Ln = Nd, Eu, Er, Yb) subunits to the binuclear gold(I) complexes through 2,2'-bipyridyl chelation gives the corresponding Au4Ln4 or Au2Ln2 heteropolynuclear complexes. Noticeably, upon formation of the Au4Ln4 arrays by complexation of (bpyC[triple bond]CAu)2(mu-Ph2P(CH2)4PPh2) (3) with Ln(hfac)3 units, trans-conformation in 3 transforms dramatically to the cis-arranged form due to the strong driving force from ligand-unsupported Au-Au contacts between two Au2Ln2 subunits. In contrast, cis-conformation in (bpyC[triple bond]CAu)2(mu-dppf) (6) stabilized by Au-Au interactions is reversed to the trans-oriented form upon formation of Au2Ln2 arrays by introducing Ln(hfac)3 units through 2,2-bipyridyl chelation. The binuclear gold(I) complexes show bright blue luminescence featured by ligand-centered pi --> pi* (C[triple bond]Cbpy) states together with low-energy emission at 500-540 nm, associated with 3(pi-->pi*) excited states, mixed probably with some characteristic from (Au-Au) --> (C[triple bond]Cbpy) 3MMLCT transition. For Au4Ln4 or Au2Ln2 complexes, sensitized lanthanide luminescence is achieved by energy transfer from Au-acetylide chromophores with lifetimes in the sub-millisecond range for EuIII complexes, whereas in the microsecond range for near-infrared emitting NdIII, ErIII, and YbIII species.  相似文献   

16.
The dinuclear gold complexes [{Au(PPh 3)} 2(mu- dmid)] ( 1) ( dmid = 1,3-dithiole-2-one-4,5-dithiolate) and [{Au(PPh 3)} 2(mu- dddt)] ( 2) ( dddt = 5,6-dihydro-1,4-dithiine-2,3-dithiolate) were synthesized and characterized by X-ray crystallography. Both complexes exhibit intramolecular aurophilic interactions with Au...Au distances of 3.1984(10) A for 1 and 3.1295(11) A for 2. A self-assembly reaction between 4,5-bis(2-hydroxyethylthio)-1,3-dithiole-2-thione ( (HOCH 2 CH 2 ) 2 dmit) and [AuCl(tht)] affords the complex [AuCl{ (HOCH 2 CH 2 ) 2 dmit}] 2 ( 4), which possesses an antiparallel dimeric arrangement resulting from a short aurophilic contact of 3.078(6) A. This motif is extended into two dimensions due to intra- and intermolecular hydrogen bonds via the hydroxyethyl groups, giving rise to a supramolecular network. Three compounds were investigated for their rich photophysical properties at 298 and 77 K in 2-MeTHF and in the solid state; [Au 2(mu- dmid)(PPh 3) 2] ( 1), [Au 2(mu- dddt)(PPh 3) 2] ( 2), and [AuCl{( HOCH 2 CH 2 ) 2 dmit}] ( 4). 1 exhibits relatively long-lived LMCT (ligand-to-metal charge transfer) emissions at 298 K in solution (370 nm; tau e approximately 17 ns, where M is a single gold not interacting with the other gold atom; i.e., the fluxional C-SAuPPh 3 units are away from each other) and in the solid state (410 nm; tau e approximately 70 mus). At 77 K, a new emission band is observed at 685 nm (tau e = 132 mus) and assigned to a LMCT emission where M is representative for two gold atoms interacting together consistent with the presence of Au...Au contacts as found in the crystal structure. In solution at 77 K, the LMCT emission is also red-shifted to 550 nm (tau e approximately 139 mus). It is believed to be associated to a given rotamer. 2 also exhibits LMCT emissions at 380 nm at 298 K in solution and at 470 nm in the solid state. 4 exhibits X/MLCT emission (halide/metal to ligand charge transfer) where M is a dimer in the solid state with obvious Au...Au interactions, resulting in red-shifted emission band, and is a monomer in solution in the 10 (-5) M concentration (i.e., no Au...Au interactions) resulting in blue-shifted luminescence. Both fluorescence and phosphorescence are observed for 4.  相似文献   

17.
A series of cis-platinum ethynyl complexes with the general formula cis-[Pt(dppe)(C[triple bond]CR)2](dppe = 1,2-bis(diphenylphosphino)ethane; R = C6H4-p-NO2 1, C6H4-p-CH3 2, C6H4-p-C[triple bond]CH 3 and C6H4-p-C6H4-p-C[triple bond]CH 4) have been prepared by the coupling reaction of cis-[Pt(dppe)Cl2] with two equivalents of the appropriate alkyne. The new complexes have been fully characterized by spectroscopic techniques, and the cis square planar arrangement at the platinum centre has been confirmed by single-crystal X-ray diffraction studies of complexes 1, 2 and 4. The absorption spectra of the complexes 1-4 are dominated by a pi-->pi* band that contains some platinum (n + 1) p orbital character. The position of the band is dependent on the electron donating or withdrawing properties of the ethynyl substituents, R. Complex 1 displays a triplet emission in the green, at room temperature, while complexes 2-4, display singlet emissions in the blue. Again, the difference can be attributed to the nature of the R substituents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号