首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用分子动力学模拟研究了以十二烷基苯磺酸钠(SDBS)为代表的阴离子型表面活性剂,以十二烷基三甲基溴化铵(DTAB)为代表的阳离子型表面活性剂,以壬基酚聚氧乙烯醚(NPE)为代表的非离子型表面活性剂,以十二烷基二甲基甜菜碱(Betaine)为代表的两性表面活性剂及空白实验.模拟了表面活性剂在油水界面上的行为,考察了表面活性剂分子与石油分子之间的径向分布函数(RDF)、石油分子在竖直方向的均方位移(MSD)、油水界面张力(IFT)、石油层与岩石层之间的相互作用能、石油层的相对浓度在竖直方向的分布及石油分子质心位置随模拟时间的变化关系等,讨论了不同表面活性剂的洗油性能.结果表明:(1)SDBS,NPE和Betaine分子初始状态下呈近似的规律排列,非极性端部分插入油相中,极性端延伸进入水相中;随后表面活性剂的极性端表现出聚集趋势,逐渐形成一个外部亲油内部亲水的一个胶束状粒子,粒子随模拟的进行逐渐融入到油层当中;DTAB从开始的近似规则排列逐渐变为无规排列,但是始终保持亲油端插入到油相中,亲水端位于油水界面上.(2)表面活性剂分子与石油分子之间的相互作用强弱顺序为Betaine≈DTABSDBSNPE.(3)由质心高度和动力过程中的图像截图分析,表面活性剂洗油效果的顺序为BetaineSDBSNPEDTABNone.模拟结果与实际的驱油结果一致,从分子层面上解释了不同表面活性剂洗油的规律.  相似文献   

2.
A new O/W (oil-in-water) emulsification system was developed using the amphiphilic polymer HHM-HEC (hydrophobically-hydrophilically modified hydroxyethylcellulose) and a lipophilic surfactant. HHM-HEC was used as a thickener and polymeric surfactant, and the addition of small quantities of various types of nonionic lipophilic surfactant (hydrophilic-lipophilic balance <5) decreased the droplet size of several types of oil due to a lowering of the tension at the water/oil interface. The oil droplets were held by the strong network structure of the aqueous HHM-HEC solution, preserving the O/W phase without inversion. These stable O/W emulsions were prepared without the addition of hydrophilic surfactants and thus show improved water repellency.  相似文献   

3.
表面活性剂亲水-亲油能力对动态界面张力的影响   总被引:3,自引:0,他引:3  
当两个不互溶的液相接触时,如果其中一相或两相含有表面活性物质,就可能产生动态界面张力。两相间的界面张力随时间连续变化,直到平衡为止。在到达平衡的过程中,经常通过一个最低值。酸性油/碱水体系也会出现类似现象。Englind和Berg把动态界面张力解释为表面活性物质在界面上累积的结果,并观察到1,5-戊二醇由白油向水中传质时存在明显的吸附-脱附位垒。Rubin和Radke首次给出了解释酸性原油与碱水溶液接触时产生动态界面张力的物理模型,他们提出在油水上存在一个表面活性物质的脱附位垒,原油中的酸性物质与氢氧化钠在界面上的反应是迅速完成的,而这些物质的脱附,则比较缓慢,从而合理地解释了这一特征。近年来,由于超低界面张力在强化采油中的重要性,国外研究者对酸性油/碱/表面活性剂体系的动态界面张力特征进行了比较系统的研究,但其机理有待进一步探讨,本文通过对正构烷烃/石油磺酸盐体系动态界面张力的研究,考察了吸附-脱附位垒产生的原因、影响因素及其对动态界面张力曲线的影响,对酸性油/表面活性剂体系动态界面张力的机理进行了更深入的探索。  相似文献   

4.
Linker molecules are amphiphiles that segregate near the microemulsion membrane either near the surfactant tail (lipophilic linkers) or the surfactant head group (hydrophilic linkers). The idea of the lipophilic linkers was introduced a decade ago as a way to increase the surfactant–oil interaction and the oil solubilization capacity. Long chain (>9 tail carbons) alcohols were first used as lipophilic linkers. Later it was found that the solubilization enhancement plateaus (saturates) above a certain lipophilic linker concentration. Hydrophilic linkers have been recently introduced as a way to compensate for the saturation effect observed for lipophilic linkers. Hydrophilic linkers are surfactant-like molecules with 6–9 tail carbons that coadsorb with the surfactant at the oil/water interface, thereby increasing the surfactant–water interaction, but have a poor interaction with the oil phase due to their short tail. A special synergism emerges when combining hydrophilic and lipophilic linkers, which further increases the solubilization enhancement over lipophilic linkers alone. We will discuss the profound impact of linker molecules on interfacial properties such as characteristic length, interfacial rigidity and dynamics (coalescence, solubilization and relaxation experiments) of the interface. We also demonstrate how these properties affect the performance of cleaning formulations designed around linker molecules. We describe linker-based formulations for a wide range of oils, including highly hydrophobic oils (e.g. hexadecane) that have proven very hard to clean. We also report on the use of ‘extended’ surfactants as an alternative to self-assembled linker systems.  相似文献   

5.
表面活性剂亲水-亲油能力对动态界面张力的影响   总被引:11,自引:0,他引:11  
当两个不互溶的液相接触时 ,如果其中一相或两相含有表面活性物质 ,就可能产生动态界面张力 .两相间的界面张力随时间连续变化 ,直到平衡为止 .在到达平衡的过程中 ,经常通过一个最低值 .酸 性油 /碱水体系也会出现类似现象 .England和 Berg[1]把动态界面张力解释为表面活性物质在界面上累积的结果 ,并观察到 1,5-戊二醇由白油向水 中传质时存在明显的吸附-脱附位垒 .Rubin和 Radke[2]首次给出了解释酸性原油与碱水溶液接触时产生动态界面张力的物理模型 ,他们提出在油水界面上存在一个表面活性物质的脱附位垒 ,原油中的酸性物质与氢氧化…  相似文献   

6.
Linker molecules are added to microemulsion systems to enhance the interaction between the surfactant and oil (lipophilic linkers) or water (hydrophilic linkers) phases. Previous results suggest that when lipophilic and hydrophilic linkers are combined they behave as a self-assembled surfactant at the oil/water interface. In this work we investigate this self-assembly phenomenon as a function of surfactant, linker and electrolyte concentration. We find that middle phase microemulsion appears at a specific concentration higher than the critical micelle concentration (CMC), which we denote as the critical middle phase microemulsion concentration (CmicroC). When the lipophilic linker dodecanol is added in equimolar ratio to the hydrophilic linker sodium mono- and dimethyl naphthalene sulfonate (SMDNS), the middle phase microemulsion did not appear until the surfactant sodium dihexyl sulfosuccinate (SDHS) concentration was larger than the CmicroC of the SDHS-alone system. Dodecanol is shown to segregate near the surfactant tails following a Langmuir-type adsorption process. This segregation is not affected by the electrolyte concentration but is significantly reduced when the surfactant (SDHS) concentration approaches the CmicroC. The data suggest that the self-assembly between hydrophilic and lipophilic linkers to form middle phase microemulsions is only possible if a minimum amount of surfactant is present.  相似文献   

7.
Liquid crystals are widely utilized as model systems to mimic biological processes where the phase behavior of lipids plays a mediating role. In various foods and pharmaceutical and biotechnical applications, the liquid crystalline phases formed by surfactants in an aqueous medium represent useful host systems for drugs, amino acids, peptides, proteins and vitamins.Various biologically active food additives are soluble in neither aqueous nor oil phase and require environmental protection against hydrolysis or oxidation. Lyotropic liquid crystals meet these requirements mainly due to their high solubilization capacities for hydrophilic, lipophilic and amphiphilic guest molecules. Moreover, recent studies demonstrated controlled and/or sustained release of solubilized molecules from different liquid crystalline matrices.This paper surveys the solubilization of hydrophilic, lipophilic and amphiphilic guest molecules for food applications and illustrates the corresponding structural transformations. Recent developments in liquid crystal characterization methods are discussed.  相似文献   

8.
The hydrophile-lipophile property of the sucrose monododecanoate changes from hydrophilic to lipophilic by adding an alcohol as a cosurfactant. With the addition of a short-alkyl-chain alcohol (pentanol, hexanol), the surfactant forms the middle-phase microemulsion whereas a lamellar liquid crystal (L!) appears with a medium- or long-chain alcohol (heptanol, octanol, decanol) at the balanced state in water/ SE/ cosurfactant/ decane system. The effect of changing oil was also studied in the presence of a middle-chain cosurfactant (heptanol). A short-chain aromatic oil (m-xylene) forms middle-phase microemulsion whereas a longer aliphatic one (hexadecane) forms lamellar liquid crystalline phase in a dilute region when the HLB of surfactant is balanced in a given system. O/W emulsions become stable on the hydrophilic-surfactant-rich side whereas W/O emulsions are stable on the cosurfactant-rich side. Emulsions are very unstable in the three-phase regions. However, when the lamellar phase is produced, emulsions become stable at the balanced state because water and oil are incorporated in L! phase in the longer cosurfactant systems such as water/ SE/ octanol/ decane and water/ SE/ decanol/ decane.  相似文献   

9.
For different water–oil–surfactant systems with added aliphatic alcohols and valeric acid, conditions for the formation of the microemulsion (third) phase containing approximately equal amounts of oil and water were determined. It was established that the microemulsion phases are formed in the initial two-phase system (oil-in-water microemulsion–oil) on adding alcohols or the acid, which can be more hydrophilic or more hydrophobic than micelle-forming surfactants. Concentrations of alcohols necessary for the transformation of the three-phase system into the two-phase one were determined. The influence of energy parameters of surfactants and structural characteristics of the alcohol and basic micelle-forming surfactant on the stability of the three-phase system is discussed.  相似文献   

10.
The formation of microemulsions with triglycerides at ambient conditions can be improved by increasing the surfactant-water and surfactant-oil interactions. Therefore, extended surfactants were developed, which contain hydrophilic/lipophilic linkers. They have the ability to stretch further into the oil and water phase and enhance the solubility of oil in water. In this work, the phase behavior of a chosen extended surfactant (C(12-14)-PO(16)-EO(2)-SO(4)Na, X-AES) in H(2)O/D(2)O at high surfactant concentrations (30-100 wt %) and at temperatures between 0 and 90 °C is studied for the first time. The lyotropic liquid crystals formed were determined by optical microscopy, small-angle X-ray scattering (SAXS), and (2)H and (23)Na NMR, and a detailed phase diagram of the concentrated area is given. The obtained mesophases are a hexagonal phase (H(1)), at low temperatures and small concentrations, a lamellar phase (L(α)) at high temperatures or concentrations, a bicontinuous cubic phase (V(2)) as well as a reverse hexagonal phase (H(2)). To our knowledge, this is the first surfactant that forms both H(1) and H(2) phases without the addition of a third compound. From the (2)H NMR quadrupole splittings of D(2)O, we have examined water binding in the L(α) and the H(2) phases. There is no marked difference in the bound water between the two phases. Where sufficient water is present, the number of bound water molecules per X-AES is estimated to be ca. 18 with only small changes at different temperatures. Similar results were obtained from the (23)Na NMR data, which again showed little difference in the ion binding between the L(α) and the H(2) phases. The X-ray diffraction data show that X-AES has a much smaller average length in the L(α) phase compared to the all-trans length than in the case for conventional surfactants. At very high surfactant concentrations an inverse isotropic solution (L(2)), containing a small fraction of solid particles, is formed. This isotropic solution is clearly identified and the size of the reversed micelles was determined using (1)H NMR measurements. Furthermore, the solid particles within the L(2) phase and the neat surfactant were analyzed. The observed results were compared to common conventional surfactants (e.g., sodium dodecyl sulfate, sodium lauryl ether sulfate, and sodium dodecyl-p-benzene sulfonate), and the influence of the hydrophilic/lipophilic linkers on the phase behavior was discussed.  相似文献   

11.
The objective of this work was to formulate and to further improve the stability of emulsions based on thyme essential oil. Several nonionic surfactants of different nature and with different hydrophilic?lipophilic balance (HLB) values were investigated. The surfactant with optimal HLB found for the thyme essential oil was Appyclean 6548 (HLB: 9-9.5). Afterwards, stabilizing biopolymers were added in order to improve emulsion stability. Properties of emulsions were evaluated in terms of droplet size and physical stability. Thyme essential oil/W emulsions formulated with a new biodegradable emulsifier (alkyl polypentoside) and welan gum as stabilizer were obtained with high shelf-life.  相似文献   

12.
Surfactant-based separations are attracting interest due to simple operations and viable economics. The present work focuses on the synthesis of two nonionic surfactants, polyglycerol fatty acid esters of cotton seed oil and castor seed oil, its characterization using Fourier transform infrared spectroscopy and liquid spectroscopy-mass spectroscopy. The synthesized surfactant is used in breaking azeotropic composition of n-propanol–water mixture via cloud point separation. The separation obtained from the synthesized surfactants is compared with the separation obtained from Tween 20 and it is found that both the synthesized surfactants are capable of breaking the azeotrope of n-propanol–water mixture.  相似文献   

13.
A series of monomeric and dimeric cationic surfactants with tuned polarity was synthesized. Oil solubilization capacity, thermotropic liquid crystalline properties, and minimum inhibitory concentration (MIC) of novel hydroxylated cationic surfactants using selected gram positive and gram negative bacteria were examined. Antibacterial activity and the propensity of gemini surfactants for oil solubilization were observed to be better than those of corresponding monomeric surfactants. Pseudo ternary phase diagrams for these surfactants, methyl methacrylate (MMA), and water clearly showed, that microemulsions can be easily formulated with all these surfactants. Solubilization and foam studies of mixed surfactant systems were also examined. Molecular architecture like the tail length, head group area, and presence of ethanolic goups in the surfactant affect the performance properties. Unlike conventional gemini surfactants the synthesized gemini surfactants also show thermotropic liquid crystalline properties (smectic‐A, Lα phase).  相似文献   

14.
In researching the properties of surfactants, lipophobicity is an important consideration. Increasing surfactant lipophobicity corresponds to a decrease in the saturation concentration of a singly dispersed surfactant in oil, i.e., a decrease in the critical micelle concentration in oil (CMC(oil)). This, in turn, is the crucial property in discussing the efficiency of a surfactant. Lipophobicity is influenced by the structure and length of the hydrophilic moiety of the surfactant. Surfactants that consist of OH or CO groups are effective for use in both aliphatic and aromatic hydrocarbon-rich systems because they are highly lipophobic and of a compact size and function independent of temperature. These characteristics are also reflected in their phase behavior. Phase diagrams illustrate the following properties: temperature independence; strong absorption at the water-oil interface and efficient action even with a very small amount of surfactant with a low CMC; high solubilization of water and oil into an aggregated surfactant solution phase. Through phase diagrams, the CMC(oil) of R10EO8 was obtained and the result used to compare the many different characteristics of the more typical oxyethylene nonionic surfactants with the new polyglyceryl nonionic surfactants.  相似文献   

15.
The interfacial and thermodynamic properties of water‐in‐oil microemulsion systems consisting of water, isopropyl myristate, n‐alkanol, and surfactant have been investigated using the method of dilution. The surfactants used were hexadecyl trimethylammonium bromide and sodium dodecylsulfate, and the cosurfactants were n‐alkanols with varying chain length from (C5–C9). The distribution of cosurfactant (n‐alkanol) between the interface of water and oil regions at the threshold level of stability as well as the energetics of the transfer of the cosurfactant from the oil to the interfacial region have been examined as a function of varying cosurfactant chain length (C4–C9) and temperature. The structural parameters (including dimension, population density and effective water pool radius) of the dispersed water droplets in the oil phase have also been evaluated and correlated with alkanol chain length.  相似文献   

16.
We have studied nonaqueous phase behavior and self-assemblies of monoglycerol fatty acid esters having different alkyl chain lengths in different nonpolar oils, namely, liquid paraffin (LP 70), squalane, and squalene. At lower temperatures, oil and solid surfactants do not mix at all compositions of mixing. Upon an increase in the temperature of the surfactant system, the solid melts to give isotropic single or two-liquid phases, depending on the nature of the oil and the surfactant. All monolaurin/oil systems form an isotropic single-phase liquid, but with a decreasing alkyl chain length of surfactant, they become less lipophilic and immiscible in oils. As a result, a two-phase domain is observed in the oil rich region of all monocaprylin/oil systems over a wide range of concentrations. Judging from the phase diagrams, the surfactants are the least miscible with squalane, and the order of miscibility tendency is squalene > LP 70 > squalane. With a further increase of temperature, the solubility of the surfactant in the oil increases, and the two-liquid phase transforms to an isotropic single phase. This phase transformation corresponds to the reverse of the cloud-point phenomenon observed in aqueous nonionic surfactant systems. Small-angle X-ray scattering (SAXS) measurements show the presence of reversed rodlike micelles in the isotropic single phase, and the length of the aggregates decreases with increasing temperature and increasing alkyl chain length of the surfactant. These results indicate a rod-sphere transformation with increasing lipophilicity of the surfactant and confirms the validity of Ninham's penetration model in the reversed system. An addition of a small amount of water dramatically enhances the elongation of the reverse micelles. Increasing the surfactant concentration or changing the oil from squalene to LP 70 also increases the length of the rodlike aggregates.  相似文献   

17.
Amphiphilic lyotropic liquid crystalline surfactants are synthesized displaying 10-undecenoic acid as hydrophobic and ethyleneglycol units as hydrophilic parts of the molecules. By addition reaction of the monomeric surfactants with poly [oxy(methylsilylene)], the surfactants are attached as side chains to the siloxane main chain. The phase behaviour of a polymer-water system and the corresponding monomer-water system is investigated by polarizing microscopy. The monomeric surfactant exhibits a liquid crystallineM 1-phase of hexagonally packed, rod-like micelles in a concentration range of 49 to 70% surfactant. The liquid crystalline state of the polymeric surfactant is more stable, which is indicated by a broader temperature- and concentration range (35%–90% polymer surfactant). At lower concentration aM 1-phase exists, which is separated by a cubic phase from a lamellarG-phase at higher concentration of the polymer surfactant. Compared to the monomeric system, the increased stability of the polymeric mesophase can be understood by the restriction of motions of the amphiphiles due to the linkage to the polymer main chain.Dedicated to Prof. Dr. F. H. Müller.The authors are greatly indebted to Wacker Chemie, D-Burghausen, FRG for kindly delivering the poly(hydrogensiloxane).  相似文献   

18.
对壬基酚聚氧乙烯醚在油相中的临界胶束浓度(CMCo)及与之相关的问题进行了研究,并获得了部分CMCo值.对CMCo与表面活性剂自身结构的关系进行分析和数学处理后,发现CMCo与活性物质自身结构间仍为对数关系.同时在对某些具体体系的界面张力随表面活性剂不同而发生的变化进行了详细分析,发现CMCw和CMCo是评价表面活性剂性能的有效工具.  相似文献   

19.
Bicontinuous microemulsions (BMEs, Winsor III), also called middle-phase microemulsions, are low-viscosity, isotropic, thermodynamically stable, and spontaneously formed mixtures of water, oil, and surfactants. They are unique solution media for electrochemistry. Here, we introduce the recent progress in the electrochemistry of BMEs from their fundamental aspects to their practical applications. Electrochemistry using BMEs has two irreplaceable properties: the coexistence of hydrophilic and lipophilic species with high self-diffusion coefficients; and the dynamic deformation of structures at an oil/water/electrode ternary interface, which is easily changed according to the property of the electrode surface. Electrochemical contact with the micro-saline and oil phases in a BME is alternately or simultaneously achieved by controlling the hydrophilicity and lipophilicity of the electrode surfaces. The selective electrochemical analysis of hydrophilic and lipophilic antioxidants in liquid foods without extraction demonstrated as the use of the unique ternary solution structures of BME on solid surfaces.  相似文献   

20.
A phase diagram of a water-polyglyceryl didodecanoate ((C11)2Gn) system was constructed as a function of polyglycerol chain length (n) at 25 degrees C. The average number of dodecanoic acid residues attached to polyglycerol is in the range of 1.6-2.3, and unlike commercial long-chain polyglycerol surfactants, unreacted polyglycerols were removed in the surfactants used. With an increase in the polyglycerol chain, the surfactant changes from lipophilic to hydrophilic, and the type of self-organized structure also changes from lamellar liquid crystals to the aqueous micellar solution phase via hexagonal liquid crystals. However, a discontinuous micellar cubic phase does not appear in the phase diagram, while it is formed in a long poly(oxyethylene)-chain nonionic surfactant system. In a dilute region, a cloud point is observed at a moderate polyglycerol chain length, n approximate to 7. The cloud temperature is dramatically increased with a slight increase in hydrophilic chain because the dehydration of the hydrophilic chain length at high temperature is low compared with that of the poly(oxyethylene) chain. In other words, the phase behavior of (C11)2Gn is not very temperature sensitive. Three-phase microemulsion is formed in a water/(C11)2.3G7.3/m-xylene system. The three-phase temperature or HLB temperature is highly dependent on the polyglycerol chain length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号