首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, an novel electrochemical‐chemical‐chemical (ECC) redox cycle was designed in an enzyme‐based sensor for acquiring additional signal amplification. The tyrosinase (Tyr) was entrapped in a sulfonated polyaniline?chitosan (SPAN?CS) composite which was used as a redox capacitor on a glass carbon electrode. Firstly, the substrate, phenol was catalyzed to catechol and further catalyzed to o‐benzoquinone by Tyr. Next, in the presence of Ru(NH3)6Cl2, the reduced state of SPAN(SPANred) was reacted with o‐benzoquinone to form it's oxidized state (SPANox) and catechol, then SPANox was reduced back to SPANred by Ru(II) in the solution. Finally, the amplified anodic current of catechol was obtained on electrode through above ECC redox cycle system. In addition, the ECC redox cycling led to a high signal‐to‐background ratio. The voltammetric response showed excellent analytical performance to phenol over two linear range of 3.5 to 200.0 nmol L?1 and 200.0 to 2000.0 nmol L?1 with a high sensitivity of 2204 μA mM?1. The detection limit was obtained to be 0.8 nmol L?1 (S/N=3). Furthermore, the proposed approach exhibited good repeatability, stability and specificity, and could offer practicality in the detection of phenol in tap water.  相似文献   

2.
In this paper a Mg2Al‐Cl layered double hydroxide (Mg2Al‐LDH) modified carbon ionic liquid electrode (CILE) was prepared and further used for the electrochemical detection of rutin. Cyclic voltammograms of rutin on Mg2Al‐LDH/CILE were recorded with a pair of well‐defined redox peaks appeared in pH 2.5 phosphate buffer solution, which was ascribed to the electrochemical reaction of rutin. Due to the presence of Mg2Al‐LDH on the electrode surface, the redox peak currents increased greatly and the electrochemical parameters were calculated. Under the optimal conditions the oxidation peak current was proportional to rutin concentration in the range from 0.08 μmol L‐1 to 800.0 μmol L‐1 with the detection limit on 0.0255 μmol L‐1 (3σ). The fabricated electrode showed good reproducibility and stability, which was successfully applied to rutin tablet samples determination.  相似文献   

3.
The present work describes the development of a photoelectrochemical sensor based on titanium dioxide, cadmium telluride quantum dots and the tris (2,2′-bipyridyl) ruthenium(II) chloride complex for detection of Isoniazid (INH). The Ru(bpy)32+/CdTe-QDs/TiO2/FTO photoelectrochemical platform was characterized by scanning electrochemical microscopy, electrochemical impedance spectroscopy and amperometry. The photoelectrochemical sensor presented two linear ranges for INH concentrations ranging from 0.5 to 150 μmol L−1 and 150 to 1270 μmol L−1, with a theoretical detection limit of 0.02 μmol L−1. The sensor was successfully applied for the determination of INH in drugs samples used in the treatment of tuberculosis.  相似文献   

4.
《中国化学》2017,35(8):1317-1321
A novel non‐enzymatic nitrite sensor was fabricated by immobilizing MnOOH‐PANI nanocomposites on a gold electrode (Au electrode). The morphology and composition of the nanocomposites were investigated by transmission electron microscopy (TEM ) and Fourier transform infrared spectrum (FTIR ). The electrochemical results showed that the sensor possessed excellent electrocatalytic ability for NO2 oxidation. The sensor displayed a linear range from 3.0 μmol•L−1 to 76.0 mmol•L−1 with a detection limit of 0.9 μmol•L−1 (S/N = 3), a sensitivity of 132.2 μA •L•mol−1•cm−2 and a response time of 3 s. Furthermore, the sensor showed good reproducibility and long‐term stability. It is expected that the MnOOH‐PANI nanocomposites could be applied for more active sensors and used in practice for nitrite sensing.  相似文献   

5.
A mesoporous zirconia modified carbon paste electrode was developed for electrochemical investigations of methyl parathion (MP, Phen‐NO2). The significant increase of the peak currents and the improvement of the redox peak potential indicate that mesoporous zirconia facilitates the electronic transfer of MP. The oxidation peak current was proportional to the MP concentration in the range from 1.0×10−8 to 1.0×10−5 mol L−1 with a detection limit of 4.6×10−9 mol L−1 (S/N=3) after accumulation under open‐circuit for 210 s. The proposed method was successfully applied to the determination of MP in apple samples.  相似文献   

6.
《Electroanalysis》2018,30(9):1946-1955
In this paper, a rapid and sensitive modified electrode for the simultaneous determination of hydroquinone (HQ) and bisphenol A (BPA) is proposed. The simultaneous determination of these two compounds is extremely important since they can coexist in the same sample and are very harmful to plants, animals and the environment in general. A carbon paste electrode (CPE) was modified with silver nanoparticles (nAg) and polyvinylpyrrolidone (PVP). The PVP was used as a reducing and stabilizing agent of nAg from silver nitrate in aqueous media. The nAg‐PVP composite obtained was characterized by transmission electron microscopy and UV‐vis spectroscopy. The electrochemical behavior of HQ and BPA at the nAg‐PVP/CPE was investigated in 0.1 mol L−1 B−R buffer (pH 6.0) using cyclic voltammetry (CV) and square wave voltammetry (SWV). The results indicate that the electrochemical responses are improved significantly with the use of the modified electrode. The calibration curves obtained by SWV, under the optimized conditions, showed linear ranges of 0.09–2.00 μmol L−1 for HQ (limit of detection 0.088 μmol L−1) and 0.04–1.00 μmol L−1 for BPA (limit of detection 0.025 μmol L−1). The modified electrode was successfully applied in the analysis of water samples and the results were comparable to those obtained using UV‐vis spectroscopy.  相似文献   

7.
《Electroanalysis》2018,30(8):1678-1688
In this work, an electrochemical sensor was constructed by applying two successive thin layers of glycine‐carbon nanotubes mixture and β‐cyclodextrin (CNTs‐Gly)/CD over glassy carbon electrode surface for some neurotransmitters determination. A host‐guest interaction between CD and neurotransmitters molecules is expected and resulted in enhanced sensitivity, selectivity and stability of sensor response. Other components of the sensor are crucial for the unique electrochemical response. Carbon nanotubes allowed large surface area for glycine distribution that provided hydrogen bonding to CD moieties and contributed to facilitated charge transfer. It was possible to determine 3,4‐dihydroxy phenyl acetic acid (DOPAC) in the linear range of 0.1 μmol L−1 to 80 μmol L−1 with detection limit of 9.40 nmol L−1, quantification limit of 31.5 nmol L−1 and sensitivity of 4.16 μA/μmol L−1. The proposed sensor was applied in synthetic cerebrospinal fluids samples using random standard addition method. Also, the proposed sensor was used to determine DOPAC in presence of common interferences and acceptable recovery results were achieved for its analysis in real blood serum. Figures of merit for (CNTs‐Gly)/CD composite in terms of precision, robustness, repeatability and reproducibility were reported.  相似文献   

8.
In this study; a sensitive, selective, and simple electrochemical sensor was developed to determine low concentration pyridoxine (Py) using a phosphorus-doped pencil graphite electrode (P-doped/PGE). Electrode modification was implemented using the chronoamperometry method at +2.0 V constant potential and 100 seconds in 0.1 mol L−1 H3PO4 supporting electrolyte solution. The characterization processes of the P-doped/PGE were carried out using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), and atomic force microscope (AFM) methods. In the concentration study, using the differential pulse voltammetry (DPV) method, a linear calibration plot was acquired in the concentration range of 0.5 to 300 μmol L−1 Py. The limit of quantification (LOQ) and limit of detection (LOD) of the developed method were calculated as 0.219 μmol L−1 and 0.0656 μmol L−1, respectively. Detection of Py has been successfully performed on the P-doped/PGE in the beverage samples. As a result, the method developed has been shown to have fast, low cost, and simple for the sensitive and selective detection of Py as an effective electrode.  相似文献   

9.
《Electroanalysis》2017,29(12):2793-2802
In this work, SiO2/Nb2O5/ZnO prepared by the sol‐gel processing method was used as substrate base for immobilization of the protoporphyrin‐IX ion. Iron(III) ion was inserted into the porphyrin ring (SiNbZn‐PPFe). A simple square wave voltammetry method based on a composite sensor carbon paste electrode of this material,designed as EPC‐SiNbZn‐PPFe, was developed and validated successfully for the determination of L‐tryptophan (Trp). The optimum conditions were obtained by using sensor modified with 18.00 mg SiNbZn‐PPFe material, 12.00 mg graphite powder and 6.0 μL mineral oil and phosphate buffer 0.3 mol L−1 pH 7.0. The sensitivity of the sensor was found to be 0.523 AL mol −1, linear range from 10 to 70 μmol L−1 and limit of detection of 3.28 μmol L−1. Therefore, the developed method was successfully applied for the Trp determination in real samples of pharmaceutical formulation and can be used for routine quality control pharmaceutical formulations containing Trp.  相似文献   

10.
For the construction of the sensor, three different carbon black (CB) materials (VULCAN XC72R, BLACK PEARLS 4750 and CB N220) were explored as modifying nanomaterial. Firstly, the electrochemical activity of the each SPE modified was compared by cyclic voltammetry and electrochemical impedance spectroscopy technique, using [Fe(CN)6]3?/4? as redox couple. After demonstrating that electrodes modified with different types of CB were characterized by improved electrochemical performances when compared with bare electrodes, and among them, electrodes modified with CB BP4750 is characterised by slightly better electrochemical properties, this type of electrode was used for the development of the analytical method. By applying SWV technique in 0.2 mol L?1 phosphate buffer (pH 3.0), the obtained analytical curves for ACP and LVF were found linearly from 4.0 to 80.0 μmol L?1 and from 0.90 to 70.0 μmol L?1 with limit of detection of 2.6 μmol L?1 and 0.42 μmol L?1 for ACP and LVF, respectively. Finally, the quantification of these drugs in river water was evaluated using the new here‐proposed sensor by recovery method in spiked samples, obtaining satisfactory recovery values. The results achieved demonstrated that the developed analytical tool is of great analytical interest being easy to use, cost‐effective, miniaturized, and thus suitable for low cost on site analysis.  相似文献   

11.
The present study describes the novel development and application of an ivermectin (IVM) sensing electrochemical platform based on reduced graphene oxide (rGO) and the macrocyclic host β-cyclodextrin (β-CD) molecule. The sensing method was based in the host-guest characteristics of β-CD and competitive interaction between the target analyte and the methylene blue (MB) redox probe. Differential pulse voltammetry (DPV) was employed for the detection of IVM and a linear response between 0.5 and 40.0 μmol L−1 with a limit of detection of 0.25 μmol L−1 was obtained using the glassy carbon (GC)/rGO/β-CD electrode. The sensing platform was successfully applied for the detection of IVM in tap water samples, which may expand the applications of β-CD towards the analysis of other chemical species.  相似文献   

12.
A novel synthesized tetraamino cobalt(II) phthalocyanine monomer was used for the fabrication of a sensor by electrochemical polymerization. A disposable electrochemical sensor based on the use of a screen printed carbon electrode covered with an electropolymerized film of tetraamino cobalt(II) phthalocyanine for the determination of L-dopa in pharmaceutical tablets and biological samples was described. Cyclic voltammetry and electrochemical impedance spectroscopy were performed for the characterization of the bare and modified electrode. For the electrochemical detection of L-dopa differential pulse voltammetry was used. The proposed method exhibits a good response towards electrooxidation of L-dopa in the linear concentration range: from 0.1 to 1000.0 μmol L−1 in BRB pH=2.0, with a detection limit of 0.03 μmol L−1 and from 1 to 1000 μmol L−1 in PBS pH=7.4, with a detection limit of 0.33 μmol L−1. Due to the fact that the developed sensor was applied in two different types of real samples, two buffer media were used, BRB pH=2.0 for pharmaceutical and urine samples and PBS pH=7.4 for whole blood samples. The proposed pCoTAPc/SPCE was successfully applied for the determination of L-dopa in pharmaceutical tablets, urine and in whole blood samples with satisfactory results.  相似文献   

13.
《Electroanalysis》2017,29(11):2526-2532
An amperometric bi‐enzyme sensor for detection of organophosphorus pesticides (OPs) with phenolic leaving groups, which are not electroactive, is presented in this work. The biosensing platform was created by a simple, controllable, and reproducible one‐step electrodeposition onto the surface of a glassy carbon electrode of a chitosan bionanocomposite with entrapped carboxylated multi walled carbon nanotubes, organophosphorus hydrolase (OPH), and horseradish peroxidase (HRP). The OPs determination involved a sequence of OPH and HRP‐catalyzed reactions resulting in phenolic radicals production, which were quantified by registering the current of their reduction at a potential of −50 mV vs. Ag, AgCl/KClsat.The developed sensor was applied for the determination of prothiofos, as an example. At optimized conditions (pH 7.25 and H2O2 concentration 200 μmol L−1), a LOD as low as 0.8 μmol L−1 was attained, while the linear concentration range was extended from 2.64 μmol L−1 up to 35 μmol L−1. The main advantage of the proposed bi‐enzyme sensor is its selectivity toward the OPs with phenolic leaving groups, excluding the interference of the nitrophenyl‐substituted OPs.  相似文献   

14.
《Electroanalysis》2017,29(10):2316-2322
A home‐made gold microelectrode (Au‐μE) was fabricated and its surface was modified with nanoporous gold structures via a facile electrochemical approach (anodization followed by electrochemical reduction method). The fabricated nanoporous Au microelectrode (NPG‐μE) was used as a sensor probe for the determination of As(III) in 1.0 mol L−1 HCl solution using square wave anodic stripping voltammetry (SWASV) technique. Field emission scanning electron microscopy (FE‐SEM) and cyclic voltammetry were used to characterize the surface morphology and assess the electrochemical surface area and the roughness factor of the NPG‐μE. SWASVs recorded with the NPG‐μE in As(III) solutions indicated linear behaviour in the concentration ranges of 10–200 μg L−1 and 2–30 μg L−1, with regression coefficients of 0.996 and 0.999 at a deposition time of 120 s, respectively. The limit of detection (LOD) was found to be 0.62 μg L−1 with high sensitivity of 29.75 μA (μg L−1)−1 cm−2. Repeatability and reproducibility were also examined and values were determined as 3.2 % and 9.0 %. Negligible interference from major interfering copper ion was noticed, revealing the excellent anti‐interference property of the proposed sensing platform. The developed NPG‐μE was successfully used for As(III) determination in tap water samples.  相似文献   

15.
《Electroanalysis》2018,30(8):1659-1668
PAMAM dendrimer/reduced graphene oxide nanocomposite modified pencil graphite electrode (PAMAM/RGO/PGE) was used to fabricate an electrochemical DNA biosensor for determination of Rituxan (RTX) at low concentrations, for the first time. The fabricated biosensor was characterized with FE‐SEM, EIS, and CV techniques. The ds‐DNA/PAMAM/RGO/PGE was used as a working electrode to study the interaction between the RTX and salmon sperm ds‐DNA by DPV technique. Because of the interaction between the drug and DNA leads to a decrease in the guanine oxidation peak current, it was used as an indicator for the determination of the RTX. Under the optimized experimental conditions, a wide linear relationship between RTX concentration and guanine signal was obtained within the range of 7.0 to 60.0 μmol L−1 and 60.0 to 300.0 μmol L−1 with a low detection limit (0.56 μmol L−1). To clarify the interaction mechanism between the RTX and the ds‐DNA, DPV and UV‐Vis measurements were used. The reproducibility, stability, and performance of the constructed biosensor was examined by quantitative measuring RTX in pharmaceutical and human serum samples with good precision (RSD; 2.0–6.0 %) and acceptable recoveries (100.04–101.95 %).  相似文献   

16.
《Electroanalysis》2018,30(8):1880-1885
This work presents a simple and low‐cost method for fast and selective determination of Verapamil (VP) in tablets and human urine samples using a boron‐doped diamond working electrode (BDD) coupled to a flow injection analysis system with multiple pulse amperometric detection (FIA‐MPA). The electrochemical behaviour of VP in 0.1 mol L−1 sulfuric acid showed three merged oxidation peaks at around +1.4 V and upon reverse scan, one reduction peak at 0.0 V (vs. Ag/AgCl). The MPA detection was performed applying a sequence of three potential pulses on BDD electrode: (1) at +1.6 V for VP oxidation, (2) at +0.2 V for reduction of the oxidized product and (3) at +0.1 V for cleaning of the working electrode surface. The FIA system was optimized with injection volume of 150 μL and flow rate of 3.5 mL min−1. The method showed a linear range from 0.8 to 40.0 μmol L−1 (R>0.99) with a low limit of detection of 0.16 μmol L−1, good repeatability (RSD<2.2 %; n=10) and sample throughput (45 h−1). Selective determination of VP in urine was performed at+0.2 V due to absence of interference from ascorbic and uric acids in this potential. The addition‐recovery tests in both samples were close to 100 % and the results were similar to an official method.  相似文献   

17.
An electrochemical genosensor in which signal amplification is achieved using p-aminophenol (p-AP) redox cycling by nicotinamide adenine dinucleotide (NADH) is presented. An immobilized thiolated capture probe is combined with a sandwich-type hybridization assay, using biotin as a tracer in the detection probe, and streptavidin-alkaline phosphatase as reporter enzyme. The phosphatase liberates the electrochemical mediator p-AP from its electrically inactive phosphate derivative. This generated p-AP is electrooxidized at an Au electrode modified self-assembled monolayer to p-quinone imine (p-QI). In the presence of NADH, p-QI is reduced back to p-AP, which can be re-oxidized on the electrode and produce amplified signal. A detection limit of 1 pM DNA target is offered by this simple one-electrode, one-enzyme format redox cycling strategy. The redox cycling design is applied successfully to the monitoring of the 16S rRNA of E. coli pathogenic bacteria, and provides a detection limit of 250 CFU μL−1.  相似文献   

18.
An effective electrochemical sensor was constructed using an unmodified boron-doped diamond electrode for determination of genistein by square-wave voltammetry. Cyclic voltammetric investigations of genistein with HClO4 solution indicated that irreversible behavior, adsorption-controlled and well-defined two oxidation peaks at about +0.92 (PA1) & +1.27 V (PA2). pH, as well as supporting electrolytes, are important in genistein oxidations. Quantification analyses of genistein were conducted using its two oxidation peaks. Using optimized experiments as well as instrumental conditions, the current response with genistein was proportionately linear in the concentrations range of 0.1 to 50.0 μg mL−1 (3.7×10−7−1.9×10−4 mol L−1), by the detection limit of 0.023 μg mL−1 (8.5×10−8 mol L−1) for PA1 and 0.028 μg mL−1 (1.1×10−7 mol L−1) for PA2 in 0.1 mol L−1 HClO4 solution (in the open circuit condition at 30 s accumulation time). Ultimately, the developed method was effectively applied to detect genistein in model human urine samples by using its second oxidation peak (PA2).  相似文献   

19.
《Electroanalysis》2017,29(4):1188-1196
In this work, one novel electrochemical sensor was prepared by alternative deposition of phosphomolybdic acid (PMoA) and poly(ethyleneimine) (PEI) on an indium tin oxide glass substrate through layer‐by‐layer assembly. The performance of as‐prepared electrode was evaluated with both of oxidizing compounds of iodate and H2O2 and reducing compounds of dopamine and ascorbic acid as models. The results showed that corresponding current response of redox peak increased linearly with the concentration of above compounds increasing in certain ranges, respectively. Limits of detection to them were in the range of 1.0×10−4 ‐ 4.3×10−4 mg mL−1 with cyclic voltammetry (CV) in 0.1 mol L−1 NaAc‐HAc buffer (pH 5.0). The electrode showed high stability and remained 95 % of its initial activity even after 100 cycles of CV scan. When applied in real samples of table salts, juice and human serum, high recoveries of 96.84 to 100.33 % were achieved with relative standard deviations of 1.11‐3.96 % (n=3) at three spiked levels. Moreover, it was also successfully applied for the simultaneous determination of dopamine and ascorbic acid in human serum with differential pulse voltammetry. The results indicated that PMoA/PEI multilayer modified electrode can be used as a universal electrochemical sensor for sensitive detection of redox compounds.  相似文献   

20.
《Electroanalysis》2017,29(10):2340-2347
This paper proposes the use of the boron‐doped diamond electrode (BDDE) in flow and batch injection analysis (FIA and BIA) systems with multiple‐pulse amperometric (MPA) detection for the determination of warfarin (WA) in pharmaceutical formulations. The electrochemical behavior of WA obtained by cyclic voltammetry (CV) in 0.1 mol L−1 phosphate buffer shows an irreversible oxidation process at +1.0 V (vs Ag/AgCl). The MPA was based on the application of two sequential potential pulses as a function of time on BDDE: (1) for WA detection at +1.2 V/100 ms and; (2) for electrode surface cleaning at −0.2 V/200 ms. Both hydrodynamic systems (FIA‐MPA and BIA‐MPA) used for WA determination achieved high precision (with relative standard deviations around 2 %, n =10), wide linear range (2.0−400.0 μmol L−1), low limits of detection (0.5 μmol L−1) and good analytical frequency (94 h−1 for FIA and 130 h−1 for BIA). The WA determination made by the proposed methods was compared to the official spectrophotometric method. The FIA‐MPA and BIA‐MPA methods are simple and fast, being an attractive option for WA routine analysis in pharmaceutical industries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号