首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An efficient voltammetric method was developed for the determination of maleic acid at a silver amalgam paste electrode (AgA‐PE) in Britton–Robinson buffer pH 2.0. The experimental parameters, such as pH of Britton–Robinson buffer, type of the supporting electrolyte and activation of the electrode surface were optimized. Under the optimal conditions, a linear response was observed over the 2×10?6–1×10?4 mol L?1 maleic acid concentration range, determination limit being 5×10?7 mol L?1. A highly stable response, with a relative standard deviation (RSD) of 1.6% for 45 repetitive measurements of 1×10?4 mol L?1 maleic acid showed that there was no apparent surface passivation indicating the suitability of the method. The method was successfully applied for direct determination of maleic acid in drinking and river water.  相似文献   

2.
The paper presents the use of a renewable silver‐amalgam film electrode (Hg(Ag)FE) for the determination of the insecticide thiamethoxam (TMO) in Britton‐Robinson buffer pH 7.0 (LOD=0.25 µg mL?1, LOQ=0.70 µg mL?1) by direct cathodic square‐wave voltammetry (SWV). The voltammetric response for TMO obtained at this electrode was the same as that obtained with a hanging mercury drop electrode, represented by two distinct reduction peaks. Since the electron transfer processes are coupled with chemical reactions involving protons, the SWV signals strongly depend on the pH of the supporting electrolyte. The developed Hg(Ag)FE‐SWV method was tested for the determination of TMO in spiked honey and river water samples, as well as for the determination of its content in the commercial formulation Actara 25 WG.  相似文献   

3.
Acibenzolar‐S‐methyl (ASM) is a novel fungicide applied for crop protection. A renewable silver amalgam film electrode was used for the determination of ASM in pH 3.4 Britton? Robinson buffer using square wave adsorptive stripping voltammetry (SW AdSV). The parameters of the method were optimized. The electroanalytical procedure made possible to determine ASM in the concentration range of 5×10?8–3×10?7 mol L?1 (LOD=4.86×10?9, LOQ=1.62×10?8 mol L?1). The effect of common interfering pesticides and heavy metal ions was checked. The validated method was applied in ASM determination in spiked water samples.  相似文献   

4.
《Electroanalysis》2004,16(19):1616-1621
The bismuth film electrode (BiFE) is presented for use in both batch voltammetric and flow injection (FI) amperometric detection of some nitrophenols (2‐nitrophenol, 2‐NP; 4‐nitrophenol, 4‐NP; 2,4‐dinitrophenol, 2,4‐DNP). The bismuth film was deposited ex situ (batch measurements) and in‐line (FI) onto a glassy carbon substrate electrode. Batch analysis of the nitrophenols was carried out in 0.04 M Britton Robinson (BR) buffer pH 4, while for FI measurements, a carrier/electrolyte solution composed of 0.1 M BR buffer pH 4 mixed with methanol (20+80, v/v%) was employed to resemble media used in preconcentration/clean‐up and flow separation sample pretreatment procedures. Under batch conditions, the voltammetric behavior of the nitrophenols was examined for dependence on medium pH in the range of 2 to 10. Employing the square‐wave voltammetry mode, the limits of detection were 0.4 μg L?1, 1.4 μg L?1, and 3.3 μg L?1 for 2‐NP, 4‐NP, and 2,4‐DNP, respectively. Under flow conditions, a simple in‐line electrochemical bismuth film renewal procedure was tested and shown to provide very good inter‐ and intra‐electrode reproducibility of the current signals at low μg L?1 analyte concentrations. The limits of detection for 2‐NP, 4‐NP and 2,4‐DNP obtained using FI and amperometric detection at ?1.0 V (vs. Ag/AgCl) were 0.3 μg L?1, 0.6 μg L?1 and 0.7 μg L?1, respectively, with linear ranges extending up to 20 μg L?1. The attractive performance of the BiFE under flow analysis conditions offers great promise with respect to its detection capability and to its use for a prolonged period of time with no need for inconvenient removal of the electrode from the system for mechanical surface treatment.  相似文献   

5.
6.
Selective electroanalytical responses for ascorbic acid, dopamine and uric acid at a carbon modified electrode based on 3‐n‐propyl‐1‐azonia‐4‐azabicyclo[2.2.2]octane silsesquioxane chloride (SiDbCl) is reported. The overlapped peaks observed at an unmodified electrode are resolved into three well defined voltammetric peaks allowing the simultaneous determination of the three species. Detection limits of 37, 0.3 and 0.1 μmo L−1 of ascorbic acid, dopamine and uric acid, respectively, were calculated from calibration curves based on differential pulse voltammetric experiments performed in Britton ‐ Robinson buffer solution at pH 7.04.  相似文献   

7.
Carboxylated multi‐walled carbon nanotubes based glassy carbon electrodes (MWNT‐COOH/GCE) modified in situ with surfactants (sodium dodecyl sulfate (SDS), cetylpyridinium bromide (CPB) and Triton X100) have been tested for the naringin determination. The effect of surfactant nature and concentration on the voltammetric characteristics of naringin has been evaluated. Anionic 100 μM SDS shows the highest 2.7‐fold increase of the oxidation currents in comparison to MWNT‐COOH/GCE. The irreversible electrooxidation of naringin is surface‐controlled process with the one electron and one proton transfer. Under conditions of first order derivative linear sweep voltammetry in Britton‐Robinson buffer (BRB) pH 8.0, the analytical ranges of 0.75–25 and 25–100 μM with the LOD and LOQ of 0.14 and 0.46 μM, respectively, have been obtained. The electrode response is selective in the presence of ascorbic, gallic and p‐coumaric acids as well as quercetin, catechin and rutin. The method has been applied for the naringin quantification in grapefruit juices.  相似文献   

8.
《Electroanalysis》2017,29(7):1721-1730
Poly(methyl red), PMR, was electropolymerized on glassy carbon electrodes by potential cycling in 50 mM phosphate buffer solution at pH 7.0 and 8.0 and Britton Robinson buffer solution in the pH range 7.0‐11.0. The electrochemical behavior of PMR modified electrodes was investigated by cyclic voltammetry in Britton Robinson buffer solution at different pHs from 5.0 to 10.0 and found that the best PMR film formation was obtained at pH 9.0. Uric acid was quantitatively determined at PMR modified electrodes by cyclic voltammetry and differential pulse voltammetry in Britton Robinson buffer at pH 5.0. Both methods presented a linear dependence between the anodic peak current and the concentration of uric acid in the range of 0.4 to 60 μM and 0.08 to 100 μM with the limits of detection of 0.038 and 0.009 μM for cyclic voltammetry and differential pulse voltammetry, respectively. Poly(methyl red) as redox mediator allowed the determination of uric acid without any interferences from the substances in serum samples.  相似文献   

9.
Electrochemical oxidation of vanillin (VAN) in the presence of caffeine (CAF) was studied on a gold (Au) electrode modified with 3‐amino‐1,2,4‐triazole‐5‐thiol (ATT) film by using differential pulse voltammetry (DPV) and cyclic voltammetry (CV) method. The formation of the ATT film on the Au electrode surface was characterized by the CV, fourier transform infrared spectroscopy (FTIR) and impedance spectroscopy (EIS) methods. A single irreversible oxidation peak of the VAN was obtained by using the CV method. The determination of VAN in the presence of CAF was carried out at pH 4 in Britton Robinson buffer (BR) by the DPV method. Under the optimal conditions, the oxidation peak current was proportional to the concentration of VAN in the range of 1.1 μM to 76.4 μM in the presence of CAF with the correlation coefficient of 0.997 and the detection limit of 0.19 μM (S/N=3). The selective determination of VAN in a commercial coffee sample was carried out with satisfactory results on the ATT‐Au modified electrode.  相似文献   

10.
In this work, a boron‐doped diamond (BDD) electrode was used for the electroanalytical determination of indole‐3‐acetic acid (IAA) phytohormone by square‐wave voltammetry. IAA yielded a well‐defined voltammetric response at +0.93 V (vs. Ag/AgCl) in Britton–Robinson buffer, pH 2.0. The process could be used to determine IAA in the concentration range of 5.0 to 50.0 µM (n=8, r=0.997), with a detection limit of 1.22 µM. The relative standard deviation of ten measurements was 2.09 % for 20.0 µM IAA. As an example, the practical applicability of BDD electrode was tested with the measurement of IAA in some plant seeds.  相似文献   

11.
This work reports the application of bismuth bulk electrode (BiBE) for the determination of 2‐methyl‐4,6‐dinitrophenol (MDNP) by differential pulse voltammetry (DPV) in Britton‐Robinson buffer of pH 12.0 as an optimal medium. BiBE was prepared by transferring molten bismuth into a glass tube under constant stream of nitrogen. The linear concentration dependences were measured from 1 to 10 μmol ? L?1 and from 10 to 100 μmol ? L?1 by using optimum accumulation potential of ?0.7 V and optimum accumulation time 30 s. Under these conditions limit of determination and limit of quantification was 0.45 and 1.5 μmol ? L?1, respectively. The developed method was successfully applied for the analysis of tap water as a model sample.  相似文献   

12.
A new voltammetric method for simultaneous determination of caffeine and pyridoxine present in different types of commercial energy drinks has been developed. This electroanalytical method is based on anodic oxidation of these biologically active nitrogen‐containing heterocycles at glassy carbon electrode covered with thin layer of sulfonated fluoropolymer Nafion® using differential pulse voltammetry in 0.1 M Britton‐Robinson buffer of pH 4.5 at potential step 5 mV, potential amplitude 70 mV, and scan rate 50 mV/s. Linear ranges for caffeine and pyridoxine determination were 63.1–600 μM and 7.5–200 μM with the detection limits of 18.9 and 2.2 μM, respectively. It was validated using high‐performance liquid chromatography with spectrophotometric detection. Obtained results have shown that voltammetric approach is very simple and low‐cost analytical method which can be used for routine determination of caffeine and pyridoxine in energy drinks.  相似文献   

13.
《Analytical letters》2012,45(3):529-546
Abstract

A simple, fast, sensitive and fully validated differential pulse polarographic (DPP) method for the determination of trace amounts of moxifloxacin in pharmaceutics, serum and urine is reported. Moxifloxacin exhibited irreversible cathodic peak over the pH 5.00–11.00 in Britton–Robinson (B–R) buffer. At pH 10.00 (the analytical pH), a well‐defined peak at ?1.61 V versus saturated calomel electrode was obtained. The current has been characterized as being diffusion‐controlled process. The diffusion current constant (id) was 1.48±0.12 and the current–concentration plot was rectilinear over the range from 5×10?7 to 1×10?4 M with correlation coefficient (n=10) of 0.995.

The proposed method was applied to commercial tablets and average percentage recovery was in agreement with that obtained by spectrophotometric comparison method. The method was extended to the in vitro determination of moxifloxacin in spiked human serum and urine.  相似文献   

14.
The voltammetric behavior of two genotoxic nitro compounds (4‐nitrophenol and 5‐nitrobenzimidazole) has been investigated using direct current voltammetry (DCV) and differential pulse voltammetry (DPV) at a polished silver solid amalgam electrode (p‐AgSAE), a mercury meniscus modified silver solid amalgam electrode (m‐AgSAE), and a mercury film modified silver solid amalgam electrode (MF‐AgSAE). The optimum conditions have been evaluated for their determination in Britton‐Robinson buffer solutions. The limit of quantification (LQ) for 5‐nitrobenzimidazole at p‐AgSAE was 0.77 µmol L?1 (DCV) and 0.47 µmol L?1 (DPV), at m‐AgSAE it was 0.32 µmol L?1 (DCV) and 0.16 µmol L?1 (DPV), and at MF‐AgSAE it was 0.97 µmol L?1 (DCV) and 0.70 µmol L?1 (DPV). For 4‐nitrophenol at p‐AgSAE, LQ was 0.37 µmol L?1 (DCV) and 0.32 µmol L?1 (DPV), at m‐AgSAE it was 0.14 µmol L?1 (DCV) and 0.1 µmol L?1 (DPV), and at MF‐AgSAE, it was 0.87 µmol L?1 (DCV) and 0.37 µmol L?1 (DPV). Thorough comparative studies have shown that m‐AgSAE is the best sensor for voltammetric determination of the two model genotoxic compounds because it gives the lowest LQ, is easier to prepare, and its surface can be easily renewed both chemically (by new amalgamation) and/or electrochemically (by imposition of cleaning pulses). The practical applicability of the newly developed methods was verified on model samples of drinking water.  相似文献   

15.
Voltammetric behavior of the antineoplastic drug 5-fluorouracil is for the first time studied on polished copper solid amalgam electrode. It was proved that the presence of the copper in the electrode material is advantageous for the determination of 5-fluorouracil, and one well-developed cathodic signal belonging to the reduction of the absorbed complex of 5-fluorouracil–Cu(II) was found as suitable for its precise determination. The highest response was recorded in Britton–Robinson buffer of pH 8 and excellent results like repeatability of measurements and determination as well or limit of detection (1.2 × 10?9 mol L?1) were reached. Moreover, the proposed method was successfully applied to the analysis of pharmaceutical sample with excellent recovery (97.0–100.9%).  相似文献   

16.
The evaluation of the voltammetric behaviour and the determination of herbicide molinate were performed for the first time over the surface of solid amalgam electrode fabricated with silver nanoparticles using cyclic voltammetry and square-wave voltammetry techniques. The experimental and instrumental parameters were evaluated to reach the maximum analytical response for molinate. It was achieved when a medium composed of 0.04 mol L?1 Britton–Robinson buffer at the pH value of 4.0 was used. Under these conditions, molinate showed one pronounced reduction peak at Ep = ?0.37 V (vs. Ag/AgCl 3 mol L?1) that was characterised as an irreversible system. An analytical curve was constructed at the concentration range from 9.36 to 243.49 µg L?1 and a limit of detection of 2.34 µg L?1 was obtained. The amalgam electrode presented good stability during the measurements with relative standard deviation (RSD) values of 2.9% for the repeatability and 5.4% for the reproducibility. The voltammetric method developed here could be conveniently applied for the determination of molinate in river water and rice spiked samples at levels below those established on the legislations of European Union and Brazil with good accuracy (RSD of less than 5% for all samples). Comparison with HPLC technique was carried out and the results indicated satisfactory concordance. According to the results depicted here, the silver nanoparticles solid amalgam electrode showed itself highly sensitive and an interesting alternative for the routine analysis of molinate in water and food samples. Furthermore, it introduces an environmentally acceptable alternative to the mercury electrodes, most commonly used for determination of reducible pesticides.  相似文献   

17.
Conventional (CPE) and miniaturized (m‐CPE) carbon paste electrodes consisting of a carbon paste filled capillary were used for differential pulse voltammetric determination of chlortoluron in samples of river water and soil, in the latter case after the extraction by methanol. Britton‐Robinson buffer pH 3 with low content of methanol was found to be optimal for the determination. The achieved determination limits were 2.8 µmol L?1 and 0.34 µmol L?1 in river water, and 3.1 and 4.3 µg g?1 in soil, using CPE and m‐CPE, respectively.  相似文献   

18.
This work is focused on the application of a silver solid electrode (AgE) for the development of modern voltammetric methods for the determination of submicromolar concentrations of biologically active compounds present in the environment. 8‐Nitroquinoline (8‐NQ), a well‐known chemical carcinogen, was chosen as a model substance. Differential pulse voltammetry (DPV) was used to study electrochemical behavior of 8‐NQ in different aqueous matrices. The following optimal conditions for determination of 8‐NQ in the concentration ranges from 2 to 100 µmol L?1 were used: Britton? Robinson (BR) buffer of pH 3.0, the regeneration potentials cycles (Ein=?1000 mV, Efin=?100 mV) and constant cleaning potential ?2000 mV. Practical applicability of AgE for the determination of micromolar concentrations of 8‐NQ was verified on model samples of drinking and river water.  相似文献   

19.
Determination of berberine, an isoquinoline plant alkaloid, with antibacterial, antiparasitic, antifungal, hypotensive and antitumoral effects, was proposed by introducing square wave voltammetry on boron‐doped diamond electrode. At optimized experimental parameters, in Britton‐Robinson buffer solution pH 5 berberine provides 3 oxidation peaks (+0.63; +1.14 and +1.34 V) and one reduction (+0.15 V) (vs. Ag/AgCl electrode), with good repeatability (relative standard deviation of 2.6 % and 1.9 % for 8 measurements at 0.5 and 10 µM concentration level, respectively). Calibration curve was linear in wade linear range from 0.1 to 50 µM with limit of detection of 0.04 µM. The proposed procedure was successfully applied for the determination of berberine in seed extract from Argemone mexicana with satisfactory recovery (102–102.6 %). The developed method may represent a sensitive alternative to highly toxic mercury electrodes, modified electrodes and chromatographic methods.  相似文献   

20.
A sensitive square‐wave voltammetry method was developed to determine cholecalciferol (vitamin D3) in pharmaceutical products at boron‐doped diamond electrode as a working electrode. Vitamin D3 provided a well‐defined voltammetric peak at around +1.00 V (vs. Ag/AgCl, 3.5 mol dm?3) in 0.02 mol dm?3 Britton‐Robinson buffer pH 5.0 prepared in 50 % ethanol. The influence of various factors such as type and pH of the supporting electrolyte, scan rate and square‐wave parameters were studied and optimized. Under optimum conditions, the oxidation peak current increased linearly with the concentration of vitamin D3 over the range of 2 to 200 μmol dm?3. The calculated limit of detection and limit of quantitation were 0.17 μmol dm?3 and 0.51 μmol dm?3, respectively. The boron‐doped diamond electrode exhibited specific recognition capability for cholecalciferol amongst possible interferences, and the determination of vitamin D3 was possible in samples such as commercial pharmaceutical products without complicated sample pretreatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号