首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yavuz Yardım 《Electroanalysis》2011,23(10):2491-2497
In the present paper, a sensitive electroanalytical methodology for the determination of capsaicin using adsorptive stripping voltammetry (AdSV) at a boron‐doped diamond (BDD) electrode is presented. The voltammetric results indicate that in the presence of sodium dodecylsulfate (SDS) the BDD electrode remarkably enhances the oxidation of capsaicin which leads to an improvement of the peak current with a shift of the peak potential to less negative values. A linear working range of 0.05 to 6.0 µg mL?1 (0.16–20 µM) with a detection limit of 0.012 µg mL?1 (0.034 µM) has been obtained using BDD electrode by AdSV.  相似文献   

2.
The electrochemical oxidation of procaine hydrochloride (PC?HCL, 2‐diethylaminoethyl 4‐aminobenzoate hydrochloride) was investigated at as‐deposited boron‐doped diamond (ad‐BDD) electrode, anodically oxidized BDD (ao‐BDD) electrode and glassy carbon (GC) electrode using cyclic voltammetry (CV). Well‐defined cyclic voltammograms were obtained for PC?HCL oxidation with high signal‐to‐background (S/B) ratio, low tendency for adsorption, good reproducibility and long‐term stability at ad‐BDD electrode, demonstrating its superior electrochemical behavior and significant advantages in contrast to ao‐BDD and GC electrode. At 100 μM PC?HCL, the voltammetric S/B ratio was nearly one order of magnitude higher at an ad‐BDD electrode than that at a GC electrode. In a separate set of experiments for oxidation of 100 μM PC?HCL, 96%, 92% and 84% of the initial oxidation peak current was retained at the ad‐BDD, ao‐BDD and GC electrode, respectively, by stirring the solution after the tenth cycle. The current response was linearly proportional to the square root of the scan rate within the range 10–1000 mV s?1 in 10 μM PC?HCL solutions, indicating that the oxidation process was diffusion‐controlled with negligible adsorption at an ad‐BDD surface. The good linearity was observed for a concentration range from 5 to 200 μM with a linear equation of y=0.03517x+0.65346 (r=0.999), and the detection limit was 0.5 μM for oxidation of PC?HCL at the ad‐BDD electrode. The ad‐BDD electrode could maintain 100% of its original activity after intermittent use for 3 months.  相似文献   

3.
The electrochemical oxidation of pyrogallol at electrogenerated poly(3,4‐ethylenedioxythiophene) (PEDOT) film‐modified screen‐printed carbon electrodes (SPCE) was investigated. The voltammetric peak for the oxidation of pyrogallol in a pH 7 buffer solution at the modified electrode occurred at 0.13 V, much lower than the bare SPCE and preanodized SPCE. The experimental parameters, including electropolymerization conditions, solution pH values and applied potentials were optimized to improve the voltammetric responses. A linear calibration plot, based on flow‐injection amperometry, was obtained for 1–1000 µM pyrogallol, and a slope of 0.030 µA/µM was obtained. The detection limit (S/N=3) was 0.63 µM.  相似文献   

4.
Poly(pyridine‐3‐boronic acid) (PPBA)/multiwalled carbon nanotubes (MWCNTs) composite modified glassy carbon electrode (GCE) was used for the simultaneous determination of ascorbic acid (AA), 3,4‐dihydroxyphenylacetic acid (DOPAC) and uric acid (UA). The anodic peaks for AA, DOPAC and UA at the PPBA/MWCNTs/GCE were well resolved in phosphate buffer solution (pH 7.4). The electrooxidation of AA, DOPAC and UA in the mixture solution was investigated. The peak currents increase with their concentrations increasing. The detection limits (S/N=3) of AA, DOPAC and UA are 5 µM, 3 µM and 0.6 µM, respectively.  相似文献   

5.
A promising modified electrode was fabricated by polymerization a conductive polymer film of dipicolinic acid (DPA) onto gold nanoparticle (AuNP)‐cysteine‐gold electrode (Au). The morphology of poly(DPA)‐AuNP‐Au electrode was investigated by scanning electron microscopy (SEM). This chemically modified electrode was used for electrochemical determination of cadmium and zinc in aqueous media using differential pulse anodic stripping voltammetry. The result showed that the modified electrode could clearly resolve the anodic stripping peaks of zinc and cadmium. The linear analytical curves were obtained in the ranges of 0.020–25.0 and 0.045–17.0 µM for zinc and cadmium respectively. The limit of detections (S/N=3) were 0.008 µM for zinc and 0.015 µM for cadmium.  相似文献   

6.
A new boron doped diamond microcells (BDD) was modified, for rapid, selective and highly sensitive determination of nitrite, using a coating film of polyoxometalates (POMs), formed by cyclic voltammetry on the molecular p‐phenylenediamine (PPD) functionalized BDD. The scanning electron microscopy (SEM) technique was used to examine the morphology of (PPD/SiW11) modified (BDD) electrode. It was found that (SiW11) layer was uniformly formed on the electrode surface. It was observed that (BDD/PPD/SiW11) showed excellent electrocatalytic activities towards nitrite ion. Under the selected conditions, the anodic peak maximum at ?0.6 V was linear versus nitrite concentration in the 40 µM–4 mM range, and the detection limit obtained was 20 µM. The newly developed electrode has been successfully applied to the determination of nitrite content in real river water samples.  相似文献   

7.
A newly nonenzymatic sensor for hydrogen peroxide (H2O2) based on the (Au‐HS/SO3H‐PMO (Et)) nanocomposite is demonstrated. The electrochemical properties of the as‐prepared nanocomposite were studied. It displayed an excellent performance towards H2O2 sensing in the linear response range from 0.20 µM to 4.30 mM (R=0.9999) with a sensitivity of 6.35×102 µA µM?1 cm?2 and a low detection limit of 0.0499 µM. Furthermore, it was not affected by electroactive interference species. These features proved that the modified electrode was suitable for determination of H2O2.  相似文献   

8.
In this work, the modified carbon paste electrode (CPE) with an imidazole derivative 2‐(2,3 dihydroxy phenyl) 4‐methyl benzimidazole (DHPMB) and reduced graphene oxide (RGO) was used as an electrochemical sensor for electrocatalytic oxidation of N‐acetyl‐L‐cysteine (NAC). The electrocatalytic oxidation of N‐acetyl‐L‐cysteine on the modified electrode surface was then investigated, indicating a reduction in oxidative over voltage and an intensive increase in the current of analyte. The scan rate potential, the percentages of DHPMB and RGO, and the pH solution were optimized. Under the optimum conditions, some parameters such as the electron transfer coefficient (α) between electrode and modifier, and the electron transfer rate constant) ks) in a 0.1 M phosphate buffer solution (pH=7.0) were obtained by cyclic voltammetry method. The diffusion coefficient of species (D) 3.96×10?5 cm2 s?1 was calculated by chronoamperometeric technique and the Tafel plot was used to calculate α (0.46) for N‐ acetyl‐L‐cysteine. Also, by using differential pulse voltammetric (DPV) technique, two linear dynamic ranges of 2–18 µM and 18–1000 µM with the detection limit of 61.0 nM for N‐acetyl‐L‐cysteine (NAC) were achieved. In the co‐existence system of N‐acetyl‐L‐cysteine (NAC), uric acid (UA) and dopamine (DA), the linear response ranges for NAC, UA, and DA are 6.0–400.0 µM, 5.0–50.0 µM and 2.0–20.0 µM, respectively and the detection limits based on (C=3sb/m) are 0.067 µM, 0.246 µM and 0.136 µM, respectively. The obtained results indicated that DHPMB/RGO/CPE is applicable to separate NAC, uric acid (UA) and dopamine (DA) oxidative peaks, simultaneously. For analytic performance, the mentioned modified electrode was used for determination of NAC in the drug samples with acceptable results, and the simultaneous determination of NAC, UA and DA oxidative peaks was investigated in the serum solutions, too.  相似文献   

9.
A boron‐doped diamond (BDD) electrode coupled to flow injection analysis (FIA) was firstly developed for determination of N‐acetyl‐L ‐cysteine (NAC) in drug formulations. The effects of experimental parameters including pH, applied potential and scan rate on the response were investigated. FIA amperometry was applied as an automatic method for the quantitative detection of trace amounts of NAC. A wide linear range of 0.5–50 µmol/L and a low detection limit of 10 nmol/L were obtained. The results of amperometric determinations show a very good reproducibility, and the RSD for the measurement based on 10 measurements was <3.7 % and <4.1 % for intra‐ and inter‐day, respectively. The benefits of the proposed method are fast, simple, sensitive and no requirement of complicated operational steps.  相似文献   

10.
Au/TiO2 nanorod composites with different ratios of [TiO2]:[Au] have been prepared by chemically reducing AuCl4 on the positively charged TiO2 nanorods surface and used to modify boron‐doped diamond (BDD) electrodes. The electrochemical behaviors of catechol on the bare and different Au/TiO2 nanorod composites‐modified BDD electrodes are studied. The cyclic voltammetric results indicate that these different Au/TiO2 nanorod composites‐modified BDD electrodes can enhance the electrocatalytic activity toward catechol detection, as compared with the bare BDD electrode. Among these different conditions, the Au/TiO2‐BDD3 electrode (the ratio of [TiO2]:[Au] is 27:1) is the most choice for catechol detection. The electrochemical response dependences of the Au/TiO2‐BDD3 electrode on pH of solution and the applied potential are studied. The detection limit of catechol is found to be about 1.4 × 10‐6 M in a linear range from 5 × 10‐6 M to 200 × 10‐6 M on the Au/TiO2‐BDD3 electrode.  相似文献   

11.
Self‐assembled monolayers of cucurbit[6]uril (CB[6]) on a gold electrode have been used for 4,4′‐oxydialine (ODA) analysis. The formation of the supramolecular complex between ODA and CB[6] was used for the molecular selection and the electroanalytical determination of this analyte. In addition to this, all the parameters affecting the modification of the gold electrode and the determination of 4,4′‐oxydianiline were optimized by square wave voltammetry. Upon the electrode modification, pentanethiol was employed to fill up the exposed surface between CB[6] molecules. The calculated detection and determination limits were 0.06 µg mL?1 and 0.19 µg mL?1, respectively, with good accuracy and precision as shown by the calculated values for the relative error and relative standard deviation (Er=0.1 % and RDS=2.9 %; n=10 ). Moreover, the developed methodology was successfully applied to the 4,4′‐oxydialine determination in real wastewaters and shoe‐dyeing samples.  相似文献   

12.
Determination of berberine, an isoquinoline plant alkaloid, with antibacterial, antiparasitic, antifungal, hypotensive and antitumoral effects, was proposed by introducing square wave voltammetry on boron‐doped diamond electrode. At optimized experimental parameters, in Britton‐Robinson buffer solution pH 5 berberine provides 3 oxidation peaks (+0.63; +1.14 and +1.34 V) and one reduction (+0.15 V) (vs. Ag/AgCl electrode), with good repeatability (relative standard deviation of 2.6 % and 1.9 % for 8 measurements at 0.5 and 10 µM concentration level, respectively). Calibration curve was linear in wade linear range from 0.1 to 50 µM with limit of detection of 0.04 µM. The proposed procedure was successfully applied for the determination of berberine in seed extract from Argemone mexicana with satisfactory recovery (102–102.6 %). The developed method may represent a sensitive alternative to highly toxic mercury electrodes, modified electrodes and chromatographic methods.  相似文献   

13.
The paper presents the use of a renewable silver‐amalgam film electrode (Hg(Ag)FE) for the determination of the insecticide thiamethoxam (TMO) in Britton‐Robinson buffer pH 7.0 (LOD=0.25 µg mL?1, LOQ=0.70 µg mL?1) by direct cathodic square‐wave voltammetry (SWV). The voltammetric response for TMO obtained at this electrode was the same as that obtained with a hanging mercury drop electrode, represented by two distinct reduction peaks. Since the electron transfer processes are coupled with chemical reactions involving protons, the SWV signals strongly depend on the pH of the supporting electrolyte. The developed Hg(Ag)FE‐SWV method was tested for the determination of TMO in spiked honey and river water samples, as well as for the determination of its content in the commercial formulation Actara 25 WG.  相似文献   

14.
In this study a biosensor with laccase immobilized in a chitosan matrix was developed. Prior to the laccase immobilization the chitosan was cross‐linked with genipin, a naturally‐occurring cross‐linking agent, and incorporated into a carbon‐paste electrode. Analytical parameters for caffeic acid, such as repeatability (2.7 %), reproducibility (3.0 %), linearity (0.27 and 33 µM; r2≥0.9983), limit of detection (LOD=0.18 µM) and recovery (96–103 %), were determined. The method was applied in the determination of the total phenolic content of mate herb samples. The good performance of the method can be attributed to the effective immobilization of laccase in the cross‐linked support.  相似文献   

15.
A chemically modified glassy carbon (GC) electrode was developed as an amperometric sensor for detection of biological thiols. The electrode was modified by inclusion of co‐enzyme pyrroloquinoline quinone (PQQ) and a co‐catalyst of oxidized single wall carbon nanotubes (Ox‐SWNT) into a gold polypyrrole (Au‐PPy) nanocomposite matrix. The electrode (PQQ/Ox‐SWNT/Au‐PPy/GC) was characterized using scanning electron microscopy and cyclic voltammetry. Optimal conditions for the PQQ/Ox‐SWNT/Au‐PPy/GC electrode were determined and then utilized for the amperometric detection of L‐cysteine, N‐acetyl‐L‐cysteine, L‐penicillamine and D, L‐glutathione. The electrochemical response for each thiol in pH 3.2 citrate phosphate buffer at +450 mV (vs. Ag/AgCl) was found to be linear with limit of detections (LOD, S/N=3) ranging from 0.50 µM for L‐penicillamine to 1.55 µM for D, L‐glutathione with sensitivities of 30.2 nA/µM and 3.6 nA/µM respectively. The electrode design is simple and easy to construct using a minimum amount of co‐enzyme and co‐catalyst, resulting in detection methods with very good stability and improved sensitivity for thiol detection.  相似文献   

16.
An electrochemical sensor for simultaneous quantification of Levodopa (L‐dopa) and Carbidopa (C‐dopa) using a β‐cyclodextrin/poly(N‐acetylaniline) (β‐CD/PNAANI) modified carbon paste electrode has been developed. Preconcentrating effect of β‐CD as well as its different inclusion complex stability with L‐dopa and C‐dopa was used to construct an electrochemical sensor for quantification of these important analytes. The overlapping anodic peaks of L‐dopa and C‐dopa at 810 mV on bare carbon paste electrode resolved in two well‐defined voltammetric peaks at 450 and 880 mV vs. Ag/AgCl, respectively, with a drastic enhancement of the anodic peak currents. Under optimized conditions, linear calibration curves were obtained in the ranges of 0.5–117 µM and 1.6–210 µM with detection limits down to 0.2 and 0.8 µM for L‐dopa and C‐dopa, respectively. The proposed electrode was successfully applied for the determination of L‐dopa /C‐dopa in pharmaceutical formulations and the results were in close agreement with the labeled values.  相似文献   

17.
N‐(3,4‐dihydroxyphenethyl)‐3,5‐dinitrobenzamide modified multiwall carbon nanotubes paste electrode was used as a voltammetric sensor for oxidation of penicillamine (PA), uric acid (UA) and tryptophan (TP). In a mixture of PA, UA and TP, those voltammograms were well separated from each other with potential differences of 300, 610, and 310 mV, respectively. The peak currents were linearly dependent on PA, UA and TP concentrations in the range of 0.05–300, 5–420, and 1.0–400 µmol L?1, with detection limits of 0.021, 2.0, and 0.82 µmol L?1, respectively. The modified electrode was used for the determination of those compounds in real samples.  相似文献   

18.
目的:建立刺激胰岛素分泌的新型降糖药物(-)-2 (S)-苄基-4-酮-4-(顺式-全氢化异吲哚-2-基)丁酸钙对映体的HPLC拆分方法。方法:采用Sumichiral OA-3300手性柱(250 × 4.6 mm I.D., 5 μm), 柱温35℃,以0.05 mol·L-1醋酸铵的甲醇溶液为流动相,检测波长为210 nm。结果:本品两对映体在22分钟内实现良好分离,分离度达3以上,S-异构体分别在0.028 ~ 5.6 μg mL-1和0.03 ~ 6.0 μg mL-1范围内线性关系良好,回归方程分别为:Y=1.32×103x-2.54 (r=0.9997)和Y=1.15×103x-1.78 (r=0.9998),最低检测限分别为0.15 ng和0.10 ng,方法精密度RSD低于1.0% (n=5)。结论:建立的对映体分离方法可用于本品光学异构体的质量控制。  相似文献   

19.
An electrochemical sensor based on electropolymerizing o‐phenylenediamine (o‐PD) on a glassy carbon electrode (GCE) was developed for determination of reducing sugars. The molecular imprinted sensor was tested by differential pulse voltammetry (DPV) to verify the changes in peak currents of hexacyanoferrate. Under the optimum analytical conditions, the current change was linear to the logarithm of glucose and fructose concentration from 0.25 to 25 µM. The detection limit of glucose and fructose were 0.185 µM and 0.173 µM, respectively. Besides, the applicability of the sensitive sensor has been successfully evaluated by determining reducing sugars in the samples from sugarcane industries.  相似文献   

20.
An electrodeposition oxygen‐incorporated gold‐modified screen‐printed carbon electrode (AuOSPE) was fabricated to determine the sulfite content in hair waving products. The AuOSPE showed an electrocatalytic current for sulfite at +0.4 V (vs. Ag/AgCl). Compared with a gold screen‐printed electrode (AuSPE), the AuOSPE showed a higher electrocatalytic current. The increase in the electrocatalytic current was ascribed to the increase of the oxygen incorporated with gold atom on AuOSPE. The AuOSPE coupled with a flow injection analysis (FIA) system showed excellent oxidation current for sulfite in a 0.1 mol L?1 phosphate buffer solution (PBS), pH 6.0. The linear working range for determining the sulfite content was 0.05 to 1200 mg L?1 (0.625 µmol L?1 to 15.00 mmol L?1) with a calculated detection limit of 0.03 mg L?1 (0.375 µmol L?1) (DL, S/N=3). Relative standard deviations (RSD) of 3.03 %, 2.30 % and 4.26 % were calculated for consecutive injections (n=12) of 20, 300 and 900 mg L?1 sulfite, respectively. The amount of sulfite in two hair waving products was determined by the proposed method and a standard iodometric method. The recoveries ranged from 96.18 % to 105.61 %. The AuOSPE showed high sensitivity, selectivity, stability and reproducibility for sulfite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号