首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
选用对二乙氨基苯甲酸钠(SDEAB)和对二甲氨基苯甲酸钠(SDMAB)作为分子内扭转电荷转移(TICT)荧光探针, 表征了甲基修饰化所引起的β-CD空腔微环境的变化, 得出环糊精的非极性空腔有利于对二烷氨基苯甲酸型分子的TICT态形成的结论。以甲醇的测定为例, 展示了分子内扭转电荷转移作为荧光探针的分析应用。  相似文献   

2.
本文用两种结构类似的分子内电荷转移化合物,3-羟基-6甲基-4-N,N-二甲氨基黄酮丙酸酯(PF)和3-甲氧基-4’-N,N-二甲氨基黄酮(DMMF),作为荧光探针,研究了壳聚糖在水溶液中的聚集状态.研究结果发现,当壳聚糖浓度增大到1×10-3 kg/L或以上时,PF在430 nm处的荧光强度有一突增现象.利用DMMF作为荧光探针,研究了它在不同壳聚糖溶液中的稳态偏振,研究发现,随着壳聚糖浓度的增大,其偏振度也明显增大.这些结果进一步证实了壳聚糖在水溶液中的聚集特性,同时也为分子内电荷转移化合物——黄酮类化合物作为荧光探针研究生物大分子在水溶液中的构象提供了有益的尝试.  相似文献   

3.
合成了一种基于激发态分子内质子转移(ESIPT)传感平台的高灵敏度性Al~(3+)荧光探针-二氢嘧啶并苯并咪唑衍生物(DPM)。DPM含有邻苯酚羟基,二氢嘧啶和咪唑片段,在HEPES-乙醇缓冲液(3:7,V/V)中能进行ESIPT过程,也可与Al~(3+)螯合。当加入痕量Al~(3+)时,可使DPM由黄绿色荧光(λem=535nm)变为DMP-Al~(3+)螯合物的深蓝色荧光(λem=451nm),荧光强度增强165倍。在其它离子共存下,DMP表现出对Al~(3+)的特异性响应。该探针已用于水样中Al~(3+)的检测,检测限达0.15 nmol/L。此外,DPM能透过细胞膜,可在荧光显微镜下检测细胞内Al~(3+)离子。  相似文献   

4.
以2,4-二氨基苯肼和2,6-二甲酰基对甲苯酚为反应物,合成了一种具有激发态分子内质子转移(ESIPT)荧光的聚合物纳米颗粒(E-FNPs)。E-FNPs富有-NH_2,-C=N-和邻位-OH基团,能够发射较强的ESIPT荧光(Φ=0. 66)。在E-FNPs溶液中加入VB_1时,溶液的颜色由黄色变为浅黄色,同时其ESIPT荧光明显淬灭;加入其它维生素和相关生物活性物时几乎无变化。基于该原理建立了一种检测VB_1的新方法。该方法的线性范围为0. 1~35. 5 nmol/L。检出限为1. 6 mmol/L。该方法应用于维生素药片VB_1含量的测定,加标回收率为99. 1%~105. 2%。本研究的"合成-修饰一体化"方法可以为ESIPT荧光聚合物纳米颗粒的制备提供借鉴;基于ESIPT荧光淬灭机理的纳米传感器可为VB_1的高灵敏、高选择性检测提供新思路。  相似文献   

5.
荧光探针凭借其选择性好、灵敏度高、响应时间快、易于操作和检测限低等优点得到了广泛的关注。 激发态分子内质子转移(ESIPT)化合物具有特殊的激发态光物理过程,其显著的光物理性质是有较高的荧光量子产率及大的斯托克斯位移。 对于荧光分子而言,较大的斯托克斯位移可以减少自吸收和由内滤效应产生的干扰,增强分子的耐光性,有利于荧光的发射。 本文对ESIPT荧光探针检测离子(包括金属阳离子和阴离子)、中性小分子和生物大分子的研究进展进行阐述,并对ESIPT荧光分子的存在问题和应用前景进行评述。  相似文献   

6.
合成了一种基于苯并噻唑衍生物的荧光探针(Z)-O-(2-(苯并[d]噻唑-2-基)-4-(2-氰基-2-(4-氰基苯基)乙烯基)-6-甲基苯基)二甲基硫代氨基甲酸酯(HBTY-N),探针在Tris溶液(p H=7)中能够通过荧光“Off-On”变化,高选择性识别Cl O-.向该探针中加入ClO-后溶液由无荧光变为橙红色荧光,斯托克位移为235nm,且识别响应快速.探针HBTY-N对ClO-的检测限为2.127×10-7 mol/L, pH适用范围为1~10,并且有较强的抗干扰能力.机理研究表明,在ClO-的作用下,探针通过“氧化去保护”机制释放出具有“聚集诱导发光+激发态分子内质子转移(AIE+ESIPT)”性质的荧光团(Z)-4-(2-(3-(苯并[d]噻唑-2-基)-4-羟基-5-甲基苯基)-1-氰基乙烯基)苄腈(HBTY),量子产率由0变为42.88%.此外,探针HBTY-N可对活细胞中ClO-进行荧光成像,且对细胞毒性低,还可用于实际水样中的ClO-检测,具有潜在的应用...  相似文献   

7.
李欠 《化学教育》2017,38(18):39-43
设计合成了含有酚羟基的萘吖嗪类荧光探针分子,利用紫外-可见吸收光谱和荧光发射光谱研究了探针分子的阴离子识别和光化学传感性能。研究结果表明,该探针分子可以通过比色(紫外-可见吸收光谱)和荧光发射光谱双通道识别检测氟离子。该探针分子是一类比率型阴离子荧光探针,作用方式为探针分子酚羟基的去质子化作用,这种激发态质子转移(ESIPT)是探针分子呈现比率荧光特性的原因。通过本实验不但可以让学生掌握紫外-可见吸收光谱和荧光发射光谱仪的使用方法,还能培养学生在分子识别与光化学传感领域的科研兴趣。  相似文献   

8.
基于激发态分子内质子转移(ESIPT)原理的反应型荧光探针,因其具有高选择性、高灵敏度及大的斯托克斯位移等优点而被广泛关注.以检测目标物的属性归类,就近十年ESIPT反应型荧光探针进行综述,阐述其检测识别机制,并对此类荧光探针应用中存在的问题及发展方向进行评述.  相似文献   

9.
基于二硝基苯醚的硫解反应识别机制,设计合成了羟基芘甲醛为荧光基团的探针分子8-(2,4-二硝基苯酚基)芘甲醛(PCNP),研究了PCNP缓冲溶液分散体系对H_2S的响应.未与H_2S作用时,分子内光致电子转移过程导致探针分子PCNP几乎不发光,当体系中存在H_2S时,PCNP发生硫解反应,光致电子转移过程被阻断,羟基芘甲醛发出橙色荧光.PCNP分子对H_2S响应迅速、灵敏,0.1 mmol·L~(-1)硫化氢存在下10 min内荧光强度响应达到最大值,荧光增强达260倍,反应速率常数为0.20 min~(-1),探针分子对H_2S检测限为0.10μmol·L~(-1),并且具有良好选择性.  相似文献   

10.
水溶性荧光探针2-(4-二羟基硼烷)苯基喹啉-4-羧酸(PBAQA)能实现儿茶酚的选择性识别,但发射波长较短.PBAQA及衍生物通常在285 nm进行荧光发射.本文报道以PBAQA为building block,通过化学合成制备一个新的二硼酸荧光探针.该化合物具有更长的发射波长,发射波长为364 nm.初步荧光活性测试结果表明,该化合物对多巴胺具有一定结合选择性.对寻找具有较长发射波长的硼酸荧光探针,实现探针分子在嗜铬细胞瘤等细胞组织进行荧光成像具有重要意义.  相似文献   

11.
A new fl uorescent probe 1 was designed for mitochondrial localization and ratiometric detection of hypochlorite in living cells. It is noteworthy that a high Pearson’s co-localization coeffi cient (Rr) we have obtained was calculated to be 0.97.  相似文献   

12.
Hypochlorous acid (HOCl), one of the reactive oxygen species (ROS), is highly reactive and short‐lived. It is a challenge to dynamic monitor HOCl activity in living systems. Hence, we synthesized a new fluoresce nt probe RF1 based on protection of the hydroxyl group by N,N‐dimethylthiocarbamate recognition group, which reached a low fluorescence background signal and highly sensitive property. On account of the electrophilic addition of Cl+ to the sulfide of thiocarbamate moiety, probe RF1 was converted to resorufin and triggered emitting bright. RF1 showed not only the highly sensitive and selective response to HOCl in vitro, but also can be applied in environmental water samples and detected HOCl by test strips. Besides, the ability of RF1 monitoring HOCl in HeLa cells by exogenous simulation and tracing native HOCl in macrophages cells were also explored.  相似文献   

13.
A pinacol boronate caged NIAD-4 derivative was demonstrated to be a near-infrared fluorescent probe for fast and selective detection of hypochlorite over other ROS species.  相似文献   

14.
The endogenous hypochlorous acid(HOCl) has been evidenced in a variety of cellular courses. However, the role of HOCl in most pathophysiological processes still keeps unclear because of the limited detecting tools. In this work, we presented the pre- paration of a phenothiazine-derived fluorescent probe ClO-1 for HOCl detection with a cyanopyridinium moiety to improve its water solubility and lengthen its emission wavelength. The HOCl-promoted oxidation of sulfur atom in the probe resulted in a 460-fold emission intensity enhancement at 635 nm with high selectivity and sensitivity(detection limit: 1.12 nmol/L). The rapid response(5 s) also endowed the probe with real-time detection ability. Successfully, ClO-1 was devoted to the bioimaging of endogenous HOCl in inflamed RAW 264.7 cells and 5-fluorouracil-treated MCF-7 cells.  相似文献   

15.
As one of the important industrial chemicals, hydrazine (N2H4) can be inhaled through the skin, leading to many serious health issues. In this paper, we constructed a novel turn-on fluorescent probe HBTM for N2H4 detection based on ESIPT and ICT mechanism by incorporating the methyl dicyanvinyl group to 2-(2′-hydroxylphenyl) benzothiazole (HBT) fluorophore. The probe showed the following advantages: high sensitivity with detection limit of 2.9 × 10?7 M, high selectivity over other related interfering species, wide linear range of 0–140 μM and pH value adaptation. Moreover, the probe could detect N2H4 on paper strips and image N2H4 in living cells.  相似文献   

16.
A ratiometric fluorescent probe 1 for fluoride ion was developed based on modulation of the excited-state intramolecular proton transfer (ESIPT) process of 2-(2′-hydroxyphenyl)benzimidazole (HPBI) through the hydroxyl group protection/deprotection reaction. The probe 1 was readily prepared by the reaction of HPBI with tert-butyldimethylsilyl chloride (TBS-Cl) and shows only fluorescence emission maximum at 360 nm. Upon treatment with fluoride in aqueous DMF solution, the TBS protective group of probe 1 was removed readily and ESIPT of the probe was switched on, which resulted in a decrease of the emission band at 360 nm and an increase of a new fluorescence peak around 454 nm. The fluorescent intensity ratio at 454 and 360 nm (I454/I360) increases linearly with fluoride ion concentration in the range 0.3-8.0 μmol L−1 and the detection limit is 0.19 μmol L−1. The proposed probe shows excellent selectivity toward fluoride ion over other common anions. The method has been successfully applied to the fluoride determination in toothpaste and tap water samples.  相似文献   

17.
Derivatives of coumarin, containing oxidant-sensitive boronate group, were recently developed for fluorescent detection of inflammatory oxidants. Here, we report the synthesis and the characterization of 3-(2-benzothiazolyl)-7-coumarin boronic acid pinacol ester (BC-BE) as a fluorescent probe for the detection of peroxynitrite (ONOO), with high stability and a fast response time. The BC-BE probe hydrolyzes in phosphate buffer to 3-(2-benzothiazolyl)-7-coumarin boronic acid (BC-BA) which is stable in the solution even after a prolonged incubation time (24 h). BC-BA is slowly oxidized by H2O2 to form the phenolic product, 3-benzothiazol-2-yl-7-hydroxy-chromen-2-one (BC-OH). On the other hand, the BC-BA probe reacts rapidly with ONOO. The ability of the BC-BA probe to detect ONOO was measured using both authentic ONOO and the system co-generating steady-state fluxes of O2 and NO. BC-BA is oxidized by ONOO to BC-OH. However, in this reaction 3-benzothiazol-2-yl-chromen-2-one (BC-H) is formed in the minor pathway, as a peroxynitrite-specific product. BC-OH is also formed in the reaction of BC-BA with HOCl, and subsequent reaction of BC-OH with HOCl leads to the formation of a chlorinated phenolic product, which could be used as a specific product for HOCl. We conclude that BC-BA shows potential as an improved fluorescent probe for the detection of peroxynitrite and hypochlorite in biological settings. Complementation of the fluorescence measurements by HPLC-based identification of oxidant-specific products will help to identify the oxidants detected.  相似文献   

18.
We have developed a ratiometric fluorescent probe BRT based on boron dipyrromethene (BODIPY) and rhodamine-thiohydrazide Förster resonance energy transfer (FRET) platform for sensing hypochlorous acid (HOCl) with high selectivity and sensitivity. The probe can detect HOCl in 15 s with the detection limit of 38 nM. Upon mixing with HOCl the fluorescence colour of probe BRT changed from green to orange. Moreover, probe BRT was applied to successfully monitor HOCl in living RAW 264.7 cells.  相似文献   

19.
A boron dipyrromethene (BODIPY)-based fluorometric probe, HCS, has been successfully developed for the highly sensitive and selective detection of hypochlorous acid (HOCl). The probe is based on the specific HOCl-promoted oxidation of methyl phenyl sulfide. The reaction is accompanied by a 160-fold increase in the fluorescent quantum yield (from 0.003 to 0.480). The fluorescent turn-on mechanism is accomplished by suppression of photoinduced electron transfer (PET) from the methyl phenyl sulfide group to BODIPY. The fluorescence intensity of the reaction between HOCl and HCS shows a good linearity in the HOCl concentration range 1–10 μM. The detection limit is 23.7 nM (S/N = 3). In addition, confocal fluorescence microscopy imaging using RAW264.7 macrophages demonstrates that the HCS probe could be an efficient fluorescent detector for HOCl in living cells.  相似文献   

20.
Two novel AIE-active salicylaldehyde azine(SAA) derivatives with a typical excited-state intramolecular proton transfer(ESIPT) process are prepared by introducing electron-withdrawing and donating groups at para-position of phenolic hydroxyl group(CN-SAA and TPA-SAA). The effect of the proton activity in SAA framework on their optical behaviors is investigated spectroscopically. The results from NMR and solvation measurements show that the proton of phenolic hydroxyl group has higher activity when there are electron-withdrawing groups, and the absorption and fluorescence spectra in buffers with different pH also provide the same results. After inviting F. as a nucleophilic probe, this proton activity difference in CN-SAA and TPA-SAA becomes more obvious. The potential application of both molecules is investigated. TPA-SAA exhibits good quantitative sensing ability towards F. with a fluorescence "turn-on" mode, whereas the aggregates of TPA-SAA can selectively and sensitively detect Cu2+ in aqueous solution. From these results, a structure-property relationship is established: the occurrence of ESIPT process will become much easier when linking electron-withdrawing groups at the para-position of phenolic hydroxyl group(e.g., CN-SAA),and it is better to introduce electron-donating groups to enhance the sensing ability towards ions(e.g., TPA-SAA). This work will provide guidance for further design and preparation of AIE-active luminogens with ESIPT process for sensing applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号