首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accurately measured peptide masses can be used for large-scale protein identification from bacterial whole-cell digests as an alternative to tandem mass spectrometry (MS/MS) provided mass measurement errors of a few parts-per-million (ppm) are obtained. Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS) routinely achieves such mass accuracy either with internal calibration or by regulating the charge in the analyzer cell. We have developed a novel and automated method for internal calibration of liquid chromatography (LC)/FTICR data from whole-cell digests using peptides in the sample identified by concurrent MS/MS together with ambient polydimethylcyclosiloxanes as internal calibrants in the mass spectra. The method reduced mass measurement error from 4.3 +/- 3.7 ppm to 0.3 +/- 2.3 ppm in an E. coli LC/FTICR dataset of 1000 MS and MS/MS spectra and is applicable to all analyses of complex protein digests by FTICRMS.  相似文献   

2.
Fourier transform ion-cyclotron resonance (FTICR) mass spectrometry offers several advantages for the analysis of biological samples, including excellent mass resolution, ultra-high mass measurement accuracy, high sensitivity, and wide mass range. We report the application of a nano-HPLC system coupled to an FTICR mass spectrometer equipped with nanoelectrospray source (nano-HPLC/nano-ESI-FTICRMS) for proteome analysis. Protein identification in proteomics is usually conducted by accurately determining peptide masses resulting from enzymatic protein digests and comparing them with theoretically digested protein sequences from databases. A tryptic in-solution digest of bovine serum albumin was used to optimize experimental conditions and data processing. Spots from Coomassie Blue and silver-stained two-dimensional (2D) gels of human thyroid tissue were excised, in-gel digested with trypsin, and subsequently analyzed by nano-HPLC/nano-ESI-FTICRMS. Additionally, we analyzed 1D-gel bands of membrane preparations of COS-6 cells from African green monkey kidney as an example of more complex protein mixtures. Nano-HPLC was performed using 1-mm reverse-phase C-18 columns for pre-concentration of the samples and reverse-phase C-18 capillary columns for separation, applying water/acetonitrile gradient elution conditions at flow rates of 200 nL/min. Mass measurement accuracies smaller than 3 ppm were routinely obtained. Different methods for processing the raw data were compared in order to identify a maximum number of peptides with the highest possible degree of automation. Parallel identification of proteins from complex mixtures down to low-femtomole levels makes nano-HPLC/nano-ESI-FTICRMS an attractive approach for proteome analysis.  相似文献   

3.
A dual-ESI-sprayer system was constructed and applied to achieve high accuracy of peptide mass measurement for protein identification by means of peptide mapping. Sample was introduced in one sprayer, and reference in the other, thus making internal calibration possible greatly enhancing the mass accuracy. Several samples were utilized to evaluate the reliability of this dual-ESI-sprayer system. The range of mass errors was 0.16-5.37 ppm. The peptide masses of tryptic digests of myoglobin (horse) were measured by the HPLC/dual-ESI-MS system, with mass deviations ranging from 0.01-7.67 ppm, and about 75% mass deviations below 5 ppm with 40% below 1[?]ppm. These peptide masses were utilized to perform database searching for protein identification, and compared to results obtained by external calibration. This comparison showed that the internal calibration provides a more reliable method of protein identification, with a much smaller number of required peptides for matching, and with less CPU time consumed for database searching.  相似文献   

4.
A sensitive, integrated top-down liquid chromatography/mass spectrometry (LC/MS) approach, suitable for the near complete characterization of specific proteins in complex protein mixtures, such as inclusion bodies of an E. coli lysate, has been successfully developed using a hybrid linear ion trap/Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. In particular, human growth hormone (hGH) (200 fmol) was analyzed with high sequence coverage (>95%), including the sites of disulfide linkages. The high mass accuracy and resolution of the FTICR mass spectrometer was used to reveal high charge state ions of hGH (22 kDa). The highly charged intact protein ions (such as the 17+ species) were captured and fragmented in the linear ion trap cell. The fragment ions from MS/MS spectra were then successfully analyzed in the FTICR cell in an on-line LC/MS run. Peptide fragments from the N-terminal and C-terminal regions, as well as large interior fragments, were captured and identified. The results allowed the unambiguous assignment of disulfide bonds Cys53-Cys165 and Cys182-Cys189, indicative of proper folding of hGH. The disulfide bond assignments were also confirmed by analysis of the tryptic digest of a sample of hGH purified from inclusion bodies. On-line LC/MS with the linear ion trap/FTICR yields high mass accuracy in both the MS and MS/MS modes (within 2 ppm with external calibration). The approach should prove useful in biotechnology applications to characterize correctly folded proteins, both in the early protein expression and the later processed stages, using only a single automated on-line LC/MS top-down method.  相似文献   

5.
The highly selective capture of phosphopeptides from proteolytic digests is a great challenge for the identification of phosphoproteins by mass spectrometry. In this work, the zirconium phosphonate-modified magnetic Fe3O4/SiO2 core/shell nanoparticles have been synthesized and successfully applied for the selective capture of phosphopeptides from complex tryptic digests of proteins before the analysis of MALDI-TOF mass spectrometry with the desired convenience of sample handling. The ratio of magnetic nanoparticle to protein and the incubation time for capturing phosphopeptides from complex proteolytic digests were investigated, and the optimized nanoparticle-to-protein ratio and incubation time were between 15:1 to 30:1 and 30 min, respectively. The excellent detection limit of 0.5 fmol β-casein has been achieved by MALDI-TOF mass spectrometry with the specific capture of zirconium phosphonate-modified magnetic Fe3O4 nanoparticles. The great specificity of zirconium phosphonate-modified magnetic Fe3O4 nanoparticles to phosphopeptides was demonstrated by the selective capture of phosphopeptides from a complex tryptic digest of the mixture of α-casein and bovine serum albumin at molar ratio of 1 to 100 in MALDI-TOF-MS analysis. An application of the magnetic nanoparticles to selective capture phosphopeptides from a tryptic digest of mouse liver lysate was further carried out by combining with nano-LC-MS/MS and MS/MS/MS analyses, and a total of 194 unique phosphopeptides were successfully identified.  相似文献   

6.
Efficient separation and enrichment of low‐abundance glycopeptides from complex biological samples is the key to the discovery of disease biomarkers. In this work, a new material was prepared by coating copper tetra(N‐carbonylacrylic) aminephthalocyanine and iminodiacetic acid onto poly(glycidyl methacrylate‐pentaerythritol triacrylate) monolith. The monolith was applied to polymer monolithic microextraction for specific capture of glycopeptides coupled with matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. The developed monolith exhibited satisfactory efficiency for glycopeptide enrichment with high selectivity and detection sensitivity. When the tryptic digest of immunoglobulin G was used as the sample, total 24 glycopeptides were identified and the detection limit was determined as 5 fmol. When the approach was applied to the analysis of glycopeptides in the mixture of bovine serum albumin and immunoglobulin G (100:1, m/m) digests, 16 glycopeptides could still be observed. Moreover, the monolith was successfully applied to the selective enrichment of glycopeptides from human serum digests, exhibiting great practicability in identifying low‐abundance glycopeptides in complex biological samples.  相似文献   

7.
米薇  王晶  应万涛  贾伟  蔡耘  钱小红 《色谱》2010,28(2):108-114
多维色谱分离、串联质谱分析技术已在蛋白质组研究中得到广泛应用。然而生物样品的蛋白质以及全酶切肽段具有高度的复杂性,这严重干扰了蛋白质高通量、规模化的分析。通过标签肽段富集进行样品预分离可以降低体系的复杂程度。本文建立了一种基于共价色谱技术选择性分离富集含半胱氨酸肽的方法,从而降低了样品体系的复杂程度。首先以牛血清白蛋白(BSA)的酶切肽段为模型,对富集条件进行了优化和考察,并在此基础上通过5种蛋白质酶切肽段混合物的富集对该方法进行了验证。结果证明此方法的重现性好,富集效率高,富集特异性好,能有效地富集鉴定含半胱氨酸肽段。所建立的方法在复杂体系的蛋白质组研究中具有广泛的应用前景,为复杂样品的蛋白质高通量、自动化、规模化鉴定和定量研究提供了实用技术。  相似文献   

8.
We have developed a method for protein identification with peptide mass fingerprinting and sequence tagging using nano liquid chromatography (LC)/Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). To achieve greater sensitivity, a nanoelectrospray (nano-ES) needle packed with reversed-phase medium was used and connected to the nano-ES ion source of the FTICR mass spectrometer. To obtain peptide sequence tag information, infrared multiphoton dissociation (IRMPD) was carried out in nano-LC/FTICR-MS analysis. The analysis involves alternating nano-ES/FTICR-MS and nano-ES/IRMPD-FTICR-MS scans during a single LC run, which provides sets of parent and fragment ion masses of the proteolytic digest. The utility of this alternating-scan nano-LC/IRMPD-FTICR-MS approach was evaluated by using bovine serum albumin as a standard protein. We applied this approach to the protein identification of rat liver diacetyl-reducing enzyme. It was demonstrated that this enzyme was correctly identified as 3-alpha-hydroxysteroid dehydrogenase by the alternating-scan nano-LC/IRMPD-FTICR-MS approach with accurate peptide mass fingerprinting and peptide sequence tagging.  相似文献   

9.
Many biomarker discovery studies are based on matrix-assisted laser desorption/ionisation (MALDI) peptide profiles. In this study, 96 human serum samples were analysed on a Bruker solariX(TM) MALDI Fourier transform ion cyclotron resonance (FTICR) system equipped with a 15 tesla magnet. Isotopically resolved peptides were observed in ultrahigh resolution FTICR profiles up to m/z 6500 with mass measurement errors (MMEs) of previously identified peptides at a sub-ppm level. For comparison with our previous platform for peptide profile mass analysis (i.e. Ultraflex II) the corresponding time-of-flight (TOF) spectra were obtained with isotopically resolved peptides up to m/z 3500. The FTICR and TOF systems performed rather similar with respect to the repeatability of the signal intensities. However, the mass measurement precision improved at least 10-fold in ultrahigh resolution data and thus simplified spectral alignment necessary for robust and quantitatively precise comparisons of profiles in large-scale clinical studies. From each single MALDI-FTICR spectrum an m/z-list was obtained with sub-ppm precision for all different species, which is beneficial for identification purposes and interlaboratory comparisons. Furthermore, the FTICR system allowed new peptide identifications from collision-induced dissociation (CID) spectra using direct infusion of reversed-phase (RP) C(18)-fractionated serum samples on an electrospray ionisation (ESI) source.  相似文献   

10.
The use of a high-performance orthogonal time-of-flight (o-TOF) mass spectrometer for sequence analysis is described. The mass spectrometer is equipped with a matrix-assisted laser desorption/ionization (MALDI) source that operates at elevated pressure, 0.01-1 Torr. Ion fragmentation is controlled by varying the pressure of the buffer gas, the laser energy, the voltage difference between the MALDI target and the adjacent sampling cone, and between the cone and the quadrupole ion guide. The peptides were analyzed under optimal ionization conditions to obtain their molecular mass, and under conditions that promote ion dissociation via metastable decomposition or collision-induced dissociation (CID). The fragmentation spectra were used to obtain sequence information. Ion dissociation was promoted via three configurations of the ionization parameters. All methods yielded sequencing-grade b- and y-type ions. Two binary mixtures of peptides were used to demonstrate that: (1) external calibration provides a standard deviation (sigma) of 4 ppm with a mode of 9 ppm; and (2) that peptides with molecular masses that differ by a factor of two may be independently fragmented by appropriately choosing the CID energy and the low-mass cut-off. Analyses of tryptic digests employed liquid chromatography (LC), deposition of the eluant on a target, and finally MALDI-TOF mass spectrometry. The mass fingerprint and the (partial) sequence of the tryptic peptides were matched to their precursor protein via database searches.  相似文献   

11.
Although data-dependent LC-MS-MS with database searching has become au courant for identifying proteins, the technique is constrained by duty-cycle inefficiency and the inability of most tandem mass analyzers to accurately measure peptide product ion masses. In this work, a novel approach is presented for simultaneous peptide fragmentation and accurate mass measurement using in-source collision-induced dissociation (CID) on electrospray ionization (ESI)-time-of-flight (TOF) MS. By employing internal mass reference compounds, mass measurement accuracy within +/-5 ppm for tryptic peptide precursors and +/-10 ppm for most sequence-specific product ions was consistently achieved. Analysis of a complex solution containing several digested protein standards did not adversely affect instrument performance.  相似文献   

12.
1,3-Butadiene (BD) has been classified as a potential human carcinogen. It occurs in the environment as well as in industrial settings. In humans, BD is readily metabolized to reactive epoxides (e.g. 1,2-epoxy-3,4-butanediol). In this study, conjugates between human serum albumin (HSA) and EBD were synthesized (molar ratios of 1:600, 1:1 and 1:0.1; HSA/EBD) under physiological conditions. The 1:600 conjugate and a blank HSA sample were digested with trypsin to obtain specific peptides that were fractionated by preparative liquid chromatography (LC). The fractions were analyzed using nanoelectrospray quadrupole time-of-flight mass spectrometry (nanoES-QqTOFMS). Adducted HSA tryptic peptides were identified and the adducted amino acid residues were identified by sequence analysis based on tandem mass spectrometry (MS/MS). A total of 26 2,3,4-trihydroxybutyl (THB) adducts were identified on 23 tryptic peptides in the HSA/EBD conjugate. The adducted amino acids were the N-terminal aspartic acid residue, six glutamic acid residues, five histidine residues and 14 lysine residues. Results from the nanoES-QqTOFMS experiments were used to set up a more sensitive liquid chromatographic/mass spectrometric (LC/MS) analysis using selected reaction monitoring. Eight of the adducted peptides could be detected in tryptic digests of the 1:0.1 HSA/EBD conjugate.  相似文献   

13.
This study demonstrates structural and conformational characterization of proteins by nanoflow electrospray ionization (nanoESI) mass spectrometry (MS) and tandem mass spectrometry (MS/MS) utilizing a quadrupole time-of-flight (Q-TOF) mass spectrometer (Micromass, Manchester, England). Model peptides were successfully sequenced at the 35 attomole (amol) level, and peptides derived from a tryptic in-gel digest of 25 femtomole (fmol) bovine serum albumin (BSA) were successfully sequenced. The results demonstrated that the MS/MS sensitivity of the Q-TOF clearly surpassed the detection limit of the silver stain. A silver destaining step greatly improved the mass analysis of peptides derived from in-gel digests. Interestingly, sequence analysis revealed BSA residue 424 (tyrosine) as a potential chlorination site. In addition, a modified procedure was successfully used to extract and measure the masses of two-dimensional polyacrylamide gel electrophoresis (2-D PAGE)-resolved proteins in the 10-68.5 kDa range. The Q-TOF was also used to monitor conformational changes of proteins. These experiments demonstrated an acid-induced denaturation of BSA in the pH 3-4 range, and heat-induced unfolding of cytochrome c between 50 and 60 degrees C. Finally, Zn2+ binding was demonstrated for the carbonic anhydrase apoprotein. In summary, the wide range of applications and the high quality of the experimental data made the Q-TOF mass spectrometer a powerful analytical tool for protein characterization.  相似文献   

14.
A butyl–silica hybrid monolithic column for bioseparation by capillary liquid chromatography (cLC) was prepared with butyl methacrylate and alkoxysilanes through a “one-pot” process. The effects of polycondensation temperature, volume percentage of N,N′-dimethylformamide, and content of cetyltrimethylammonium bromide and butyl methacrylate on the morphologies of the hybrid monolithic columns prepared were investigated in detail. Baseline separations of proteins and small peptides on the hybrid monolithic column were achieved by cLC with gradient elution. In addition, the resulting hybrid column was also applied for analysis of tryptic digests of bovine serum albumin by cLC coupled with tandem mass spectrometry. The results demonstrate its potential application in separation of complex biological samples.  相似文献   

15.
Bioactive peptides and tryptic digests of various proteins were separated under acidic and alkaline conditions by ion-pair-reversed-phase high-performance liquid chromatography (RP-HPIPC) in 200 microm I.D. monolithic, poly(styrene-divinylbenzene)-based capillary columns using gradients of acetonitrile in 0.050% aqueous trifluoroacetic acid, pH 2.1, or 1.0% triethylamine-acetic acid, pH 10.6. Chromatographic performances with mobile phases of low and high-pH were practically equivalent and facilitated the separation of more than 50 tryptic peptides of bovine serum albumin within 15-20 min with peak widths at half height between 4 and 10 s. Neither a significant change in retentivity nor efficiency of the monolithic column was observed during 17-day operation at pH 10.6 and 50 degrees C. Upon separation by RP-HPIPC at high-pH, peptide detectabilities in full-scan negative-ion electrospray ionization mass spectrometry (negESI-MS) were about two to three times lower as compared to RP-HPIPC at low-pH with posESI-MS detection. Tandem mass spectra obtained by fragmentation of deprotonated peptide ions in negative ion mode yielded interpretable sequence information only in a few cases of relatively short peptides. However, in order to obtain sequence information for peptides separated with alkaline mobile phases, tandem mass spectrometry (MS/MS) could be performed in positive ion mode. The chromatographic selectivities were significantly different in separations performed with acidic and alkaline eluents, which facilitated the fractionation of a complex peptide mixture obtained by the tryptic digestion of 10 proteins utilizing off-line, two-dimensional RP-HPIPC at high pH x RP-HPIPC at low pH and subsequent on-line identification by posESI-MS/MS.  相似文献   

16.
Capillary high-performance liquid chromatography has been coupled on-line with an ion trap storage/reflectron time-of-flight mass spectrometer to perform tandem mass spectrometry for tryptic peptides. Selection and fragmentation of the precursor ions were performed in a three-dimensional ion trap, and the resulting fragment ions were pulsed out of the trap into a reflectron time-of-flight mass spectrometer for mass analysis. The stored waveform inverse Fourier transform waveform was applied to perform ion selection and an improved tickle voltage optimization scheme was used to generate collision-induced dissociation. Tandem mass spectra of various doubly charged tryptic peptides were investigated where a conspicuous y ion series over a certain mass range defined a partial amino acid sequence. The partial sequence was used to determine the identity of the peptide or even the protein by database search using the sequence tag approach. Several peptides from tryptic digests of horse heart myoglobin and bovine cytochrome c were selected for tandem mass spectrometry (MS/MS) where it was demonstrated that the proteins could be identified based on sequence tags derived from MS/MS spectra. This approach was also utilized to identify protein spots from a two-dimensional gel separation of a human esophageal adenocarcinoma cell line.  相似文献   

17.
Protein identifications by peptide mass fingerprint analyses with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were performed using microelectrospray ionization coupled to nano liquid chromatography (NanoLC), as well as using matrix-assisted laser desorption/ionization (MALDI). Tryptic digests of bovine serum albumin (BSA), diluted down to femtomole quantities, have been desalted by fast NanoLC under isocratic elution conditions as the high resolving power of FT-ICR MS enables peptides to be separated during the mass analysis stage of the experiment. The high mass accuracy achieved with FT-ICR MS (a few ppm with external calibration) facilitated unambiguous protein identification from protein database searches, even when only a few tryptic peptides of a protein were detected. Statistical confidence in the database search results was further improved by internal calibration due to increased mass accuracy. Matrix-assisted laser desorption/ionization and micro electrospray ionization (ESI) FT-ICR showed good mass accuracies in the low femtomole range, yet a better sensitivity was observed with MALDI. However, in higher femtomole ranges slightly lower mass accuracies were observed with MALDI FT-ICR than with microESI FT-ICR due to scan-to-scan variations of the ion population in the ICR cell. Database search results and protein sequence coverage results from NanoLC FT-ICR MS and MALDI FT-ICR MS, as well as the effect of mass accuracy on protein identification for the peptide mass fingerprint analysis are evaluated.  相似文献   

18.
Sequencing of N-terminally blocked proteins/peptides is a challenge since these molecules inhibit processing by Edman degradation. By using high accuracy Fourier transform ion cyclotron resonance (FTICR) tandem mass spectrometry and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS), the primary structures of two novel N-terminally blocked antifungal peptides (EAFP1 and EAFP2), purified from the bark of Eucommia ulmoides Oliv, have been determined. The results show that the high mass accuracy provided by FTICR mass spectrometry is effective to determine the N-terminally blocking group, and can simplify the task of spectral interpretation and improve the precision of sequence determination. The combination of MALDI-TOFMS with carboxyl peptidase Y digestion was used to determine the C-terminal 36- and 27-residue sequences of EAFP1 and EAFP2, respectively, to provide the sequence linkage information for tryptic fragments. Compared with traditional peptide chemistry the advantage of mass spectrometric techniques is their simplicity, speed and sensitivity.  相似文献   

19.
In this study, the advantages of carrying out the analysis of peptides and tryptic digests of proteins under gradient elution conditions at pH 6.5 by reversed-phase liquid chromatography (RP-HPLC) and in-line electrospray ionisation mass spectrometry (ESI-MS) are documented. For these RP separations, a double endcapped, bidentate anchored n-octadecyl wide pore silica adsorbent was employed in a capillary column format. Compared to the corresponding analysis of the same peptides and protein tryptic digests using low pH elution conditions for their RP-HPLC separation, this alternative approach provides improved selectivity and more efficient separation of these analytes, thus allowing a more sensitive identification of proteins at different abundance levels, i.e. more tryptic peptides from the same protein could be confidently identified, enabling higher sequence coverage of the protein to be obtained. This approach was further evaluated with very complex tryptic digests derived from a human plasma protein sample using an online two-dimensional (2D) strong cation-exchange (SCX)-RP-HPLC-ESI-MS/MS system. Again, at pH 6.5, with mobile phases of different compositions, improved chromatographic selectivities were obtained, concomitant with more sensitive on-line electrospray ionisation tandem mass spectrometric (ESI-MS/MS) analysis. As a consequence, more plasma proteins could be confidently identified, highlighting the potential of these RP-HPLC methods with elution at pH 6.5 to extend further the scope of proteomic investigations.  相似文献   

20.
Liquid separation methods in combination with electrospray mass spectrometry as well as the recently introduced fragmentation method electron capture dissociation (ECD) have become powerful tools in proteomics research. This paper presents the results of the first successful attempts to combine liquid chromatography (LC) and Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) with ECD in the analysis of a mixture of standard peptides and of a bovine serum albumin tryptic digest. A novel electron injection system provided conditions for ECD sufficient to yield extensive sequence information for the most abundant peptides in the mixtures on the time-scale of the chromatographic separation. The results suggest that LC/ECD-FTICRMS can be employed in the characterization of peptides in enzymatic digests of proteins or protein mixtures and identify and localize posttranslational modifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号