首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The gas phase reaction of Cu plasma and acetonitrile clusters is studied by the laser ablation-molecular beam(LAMB) method. Four series of clustered complex ions Cu+(CH3CN)n, CH2CN+(CH3CN)n,H+(CH3CN)n and CH3CHCN+(CH3CN)n are observed. Interestingly,the species and sizes of the product clusters vary observably when the plasma acts on the different parts of the pulsed acetonitrile molecular beam. When the laser ablated Cu plasma acts on the head of the beam,the metal acetonitrile complex clusters Cu+(CH3CN)n together with protonated acetonitrile clusters H+(CH3CN)n and deprotonated acetonitrile clusters CH2CN+ (CH3CN)n are domain,while the plasma acts on the middle of the beam. However,CH2CN+(CH3CN)n and H+(CH3CN)n along with the clusters CH3CHCN+(CH3CN)n turn out to be the main resulting clusters. By comparing the intensities and the cluster sizes of CH3CHCN+(CH3CN)n with H+(CH3CN)n and CH2CN+(CH3CN)n,the formation of CH3CHCN +(CH3CN)n is contributed to the intracluster ion-molecule reaction of acetonitrile clusters.  相似文献   

2.
For conductive carbon nanotube (CN)/polymer composite fibers to be obtained, CNs were incorporated into poly(vinylidene fluoride) (PVDF) in dimethylformamide (DMF) solutions and electrospun to form CN/PVDF fiber mats. The thinnest fiber was 70 nm thick. The percolation threshold for the insulator‐to‐conductor transition was 0.003 wt % CN for CN/PVDF/DMF solutions, 0.015 wt % CN for CN/PVDF spin‐coated films, and 0.04 wt % CN for CN/PVDF electrospun fiber mats. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1572–1577, 2003  相似文献   

3.
The authors have studied CN(B-X) and CN(A-X) emissions produced by the dissociative recombination of HNC+ ions with thermal electrons in a flowing afterglow experiment. A separate drift tube study showed that the reaction Ar(+)+HCN, the precursor reaction used in the flow-tube experiment, produces predominantly HNC+ rather than the more energetic HCN+ isomer. Models simulating the ion-chemical processes, diffusion, and gas mixing in the afterglow plasma were fitted to observed position dependent CN(A-X) and CN(B-X) band intensities. Absolute yields of CN(B) and CN(A) were then obtained by comparing the CN band intensities to those of CO bands produced by recombination of CO(2) (+) ions. It was concluded that the 300 K recombination coefficient of HNC+ is close to 2 x 10(-7) cm(3) s(-1), that CN(B) is formed with a yield of 0.22+/-0.08 and CN(A) with a yield of 0.14+/-0.05. By comparison to synthetic spectra, the rotational temperature of CN(B) was estimated to be approximately 2500 K. It was also found that recombination produces CN(B) and CN(A) with far greater vibrational excitation than would be expected from the "impulse model" of Bates [Mon. Not. R. Astron. Soc. 263, 369 (1993)].  相似文献   

4.
The thermal decompositions of Hg(CN)2, K2Hg(CN)4, KHg(CN)2Cl · H2O KHg(CN)2Br and KHg(CN)2I were studied. The results showed that each of the studied complexes decomposes at a lower temperature than Hg(CN)2 itself. The halogen-containing complexes decompose in two ways. In KHg(CN)2Cl · H2O the Hg-CN bond is first broken, and then Hg2Cl2, (CN)2 and KCN are formed. The first step in the decomposition of KHg(CN)2Br and KHg(CN)2I, on the other hand, is the decomposition to Hg(CN)2 and KBr or KI.  相似文献   

5.
Chlorocobalt(III) tetraphenylporphyrin, (Cl)CoIIITPP, reacts with potassium cyanide in dichloromethane or benzene containing 18-crown-6 to give a green solution of [crown-K+][(CN)2CoIIITPP-]. The molecular structure of [crown-K+][(CN)2CoIIITPP-] is identified by X-ray crystallography. In methanol, (Cl)CoIIITPP plus KCN also gives a green solution of [(CN)2CoIIITPP-]. The green methanol solution containing 1.4 x 10(-4) M KCN turns orange by continuous photolysis with a 250-W mercury lamp for 5 min. The orange solution returns to green when it is kept in the dark for 5 min. The kinetic study suggests that [(CN)2CoIIITPP-] dissociates CN- by continuous photolysis, giving rise to the formation of the orange species, (CH3OH)(CN)CoIIITPP. The photoproduct, (CH3OH)(CN)CoIIITPP, regenerates the green species, [(CN)2CoIIITPP-], by reaction with CN-. The laser photolysis study of [(CN)2CoIIITPP-] in methanol demonstrates that photodissociation of CN- takes place within 20 ns after the 355-nm laser pulse, resulting in the formation of two transients, I (short-lived) and II (long-lived). The absorption spectra of both transients are similar to that of (CH3OH)(CN)CoIIITPP. These transients eventually return to [(CN)2CoIIITPP-]. The decay of species I follows first-order kinetics with a rate constant k. = 2 x 10(6) s-1, independent of the concentration of KCN. Species II is identified as (CH3OH)(CN)CoIIITPP, which is observed with the continuous photolysis of the solution. The laser photolysis of [crown-K+][(CN)2COIIITPP-] in dichloromethane gives the transient species, which goes back to the original complex according to first-order kinetics with a rate constant k = 5 x 10(6) s-1. [crown-K+][(CN)2CoIIITPP-] is concluded to photodissociate the axial CN- to form [crown-K+CN-][(CN)CoIIITPP] in which an oxygen atom of the crown moiety in [crown-K+CN-] is coordinated to the cobalt(III) atom of [(CN)CoIIITPP] at the axial position. The intracomplex reverse reaction of [crown-K+CN-][(CN)CoIIITPP] leads to the regeneration of [crown-K+][(CN)2CoIIITPP-]. The structure and the reaction of the transient species I observed for [(CN)2CoIIITPP-] in methanol are discussed on the basis of the laser photolysis studies of [crown-K+][(CN)2CoIIITPP-] in dichloromethane.  相似文献   

6.
We have studied the outer-sphere reduction of [Fe(CN)5(NO)]2- by several reagents including dithionite and have for the first time measured the IR spectra of [Fe(CN)5(NO)]3- and [Fe(CN)4(NO)]2- in aqueous media. The spectra of [Fe(CN)5(NO)]3- and [Fe(CN)4(NO)]2- are consistent with bent six-coordinate {MNO}7 and linear five-coordinate {MNO}7 species, respectively. We have measured the UV-visible and IR spectra that evolve after [Fe(CN)5(NO)]2- is reacted with thiolate. These spectra permit us to assign the molecular structure of the so-called "red product" as [Fe(CN)5(eta1-N-RSNO)]3-. We have followed the decomposition of the [Fe(CN)5(eta1-N-RSNO)]3- by IR. Importantly, there is a 1:1 correspondence between the disappearance of the [Fe(CN)5(eta1-N-RSNO)]3- and the formation of [Fe(CN)5(NO)]3-. Thus, we conclude under the conditions of this study, reduction of [Fe(CN)5(NO)]2- by thiolate takes place via a (dark) inner-sphere mechanism that yields [Fe(CN)5(NO)]3- via homolytic N-S bond cleavage.  相似文献   

7.
As an emerging 2D conjugated material,graphitic carbon nitride(CN) has attracted great research attention as important catalytic medium for transforming solar energy.Nanostructure modulation of CN is an effective way to improve catalytic activities and has been extensively investigated,but remains challenging due to complex processes,time consuming or low yield.Here,taking advantage of recent discovered good solvents for CN,a nanoprecipitation approach using poor solvents is proposed for preparation of CN nanoparticles(CN NPs).With simple processes of CN dissolution and precipitation,we can quickly synthesize CN NPs(^40 nm) with a yield of up to 50%,the highest one to the best of our knowledge.As an example of potential applications,the as-prepared CN NPs were applied to photocatalytic degradation of dyes with an evident boosted performance up to 2.5 times.This work would open a new way for batch preparation of nanostructured CN and pave its large-scale industrial applications.  相似文献   

8.
The generation of metal cyanide ions in the gas phase by laser ablation of M(CN)(2) (M = Co, Ni, Zn, Cd, Hg), Fe(III)[Fe(III)(CN)(6)] x xH(2)O, Ag(3)[M(CN)(6)] (M = Fe, Co), and Ag(2)[Fe(CN)(5)(NO)] has been investigated using Fourier transform ion cyclotron resonance mass spectrometry. Irradiation of Zn(CN)(2) and Cd(CN)(2) produced extensive series of anions, [Zn(n)(CN)(2n+1)](-) (1 < or = n < or = 27) and [Cd(n)(CN)(2n+1)](-) (n = 1, 2, 8-27, and possibly 29, 30). Cations Hg(CN)(+) and [Hg(2)(CN)(x)](+) (x = 1-3), and anions [Hg(CN)(x)](-) (x = 2, 3), are produced from Hg(CN)(2). Irradiation of Fe(III)[Fe(III)(CN)(6)] x xH(2)O gives the anions [Fe(CN)(2)](-), [Fe(CN)(3)](-), [Fe(2)(CN)(3)](-), [Fe(2)(CN)(4)](-), and [Fe(2)(CN)(5)](-). When Ag(3)[Fe(CN)(6)] is ablated, [AgFe(CN)(4)](-) and [Ag(2)Fe(CN)(5)](-) are observed together with homoleptic anions of Fe and Ag. The additional heterometallic complexes [AgFe(2)(CN)(6)](-), [AgFe(3)(CN)(8)](-), [Ag(2)Fe(2)(CN)(7)](-), and [Ag(3)Fe(CN)(6)](-) are observed on ablation of Ag(2)[Fe(CN)(5)(NO)]. Homoleptic anions [Co(n)(CN)(n+1)](-) (n = 1-3), [Co(n)(CN)(n+2)](-) (n = 1-3), [Co(2)(CN)(4)](-), and [Co(3)(CN)(5)](-) are formed when anhydrous Co(CN)(2) is the target. Ablation of Ag(3)[Co(CN)(6)] yields cations [Ag(n)(CN)(n-1)](+) (n = 1-4) and [Ag(n)Co(CN)(n)](+) (n = 1, 2) and anions [Ag(n)(CN)(n+1)](-) (n = 1-3), [Co(n)(CN)(n-1)](-) (n = 1, 2), [Ag(n)Co(CN)(n+2)](-) (n = 1, 2), and [Ag(n)Co(CN)(n+3)](-) (n = 0-2). The Ni(I) species [Ni(n)(CN)(n-1)](+) (n = 1-4) and [Ni(n)(CN)(n+1)](-) (n = 1-3) are produced when anhydrous Ni(CN)(2) is irradiated. In all cases, CN(-) and polyatomic carbon nitride ions C(x)N(y)(-) are formed concurrently. On the basis of density functional calculations, probable structures are proposed for most of the newly observed species. General structural features are low coordination numbers, regular trigonal coordination stereochemistry for d(10) metals but distorted trigonal stereochemistry for transition metals, the occurrence of M-CN-M and M(-CN-)(2)M bridges, addition of AgCN to terminal CN ligands, and the occurrence of high spin ground states for linear [M(n)(CN)(n+1)](-) complexes of Co and Ni.  相似文献   

9.
Franck-Condon one-electron oxidation of the stable anions -CH2CN, CH3-CHCN and -CH2CH2CN (in the collision cell of a reverse-sector mass spectrometer) produce the radicals .CH2CN, CH3.CHCN and .CH2CH2CN, which neither rearrange nor decompose during the microsecond duration of the neutralisation-reionisation experiment. Acetonitrile (CH3CN) and propionitrile (CH3CH2CN) are known interstellar molecules and radical abstraction of these could produce energised .CH2CN and CH3.CHCN, which might react with NH2. (a known interstellar radical) on interstellar dust or ice surfaces to form NH2CH2CN and NH2CH(CH3)CN, precursors of the amino acids glycine and alanine.  相似文献   

10.
The preparation and X-ray crystal structures of (CyNC)Au(I)CN, (n-BuNC)Au(I)CN, and (i-PrNC)Au(I)CN.0.5CH(2)Cl(2) are reported and compared with those of (MeNC)Au(I)CN and (t-BuNC)Au(I)CN, which were previously described. These linear molecules are all organized through aurophilic interactions into three structural classes: simple chains ((CyNC)Au(I)CN and (t-BuNC)Au(I)CN), side-by-side chains in which two strands make Au...Au contact with each other ((n-BuNC)Au(I)CN), and nets in which multiple aurophilic interactions produce layers of gold(I) centers ((i-PrNC)Au(I)CN and (MeNC)Au(I)CN). All of these five solids dissolve to produce colorless, nonluminescent solutions with similar UV/vis spectra. However, each of the solids displays a unique luminescence with emission maxima occurring in the range 371-430 nm.  相似文献   

11.
Graphitic carbon nitride (g‐CN) has emerged as a promising material for energy‐related applications. However, exploitation of g‐CN in practical devices is still limited owing to difficulties in fabricating g‐CN films with adjustable properties and high surface area. A general and simple pathway is reported to grow highly porous and large‐scale g‐CN films with controllable chemical and photophysical properties on various substrates using the doctor blade technique. The growth of g‐CN films, ascribed to the formation of a supramolecular paste, comprises g‐CN monomers in ethylene glycol, which can be cast on different substrates. The g‐CN composition, porosity, and optical properties can be tuned by the design of the supramolecular paste, which upon calcination results in a continuous porous g‐CN network. The strength of the porous structure is demonstrated by high electrochemically active surface area, excellent dye adsorption and photoelectrochemical and photodegradation properties.  相似文献   

12.
Formation kinetics of the metal-metal bonded binuclear [(CN)(5)Pt-Tl(CN)](-) (1) and the trinuclear [(CN)(5)Pt-Tl-Pt(CN)(5)](3-) (2) complexes is studied, using the standard mix-and-measure spectrophotometric method. The overall reactions are Pt(CN)(4)(2-) + Tl(CN)(2)(+) <==> 1 and Pt(CN)(4)(2-) + [(CN)(5)Pt-Tl(CN)](-) <==> 2. The corresponding expressions for the pseudo-first-order rate constants are k(obs) = (k(1)[Tl(CN)(2)(+)] + k(-1))[Tl(CN)(2)(+)] (at Tl(CN)(2)(+) excess) and k(obs) = (k(2b)[Pt(CN)(4)(2-)] + k(-2b))[HCN] (at Pt(CN)(4)(2-) excess), and the computed parameters are k(1) = 1.04 +/- 0.02 M(-2) s(-1), k(-1) = k(1)/K(1) = 7 x 10(-5) M(-1) s(-1) and k(2b) = 0.45 +/- 0.04 M(-2) s(-1), K(2b) = 26 +/- 6 M(-1), k(-2b) = k(2b)/K(2b) = 0.017 M(-1) s(-1), respectively. Detailed kinetic models are proposed to rationalize the rate laws. Two important steps need to occur during the complex formation in both cases: (i) metal-metal bond formation and (ii) the coordination of the fifth cyanide to the platinum site in a nucleophilic addition. The main difference in the formation kinetics of the complexes is the nature of the cyanide donor in step ii. In the formation of [(CN)(5)Pt-Tl(CN)](-), Tl(CN)(2)(+) is the source of the cyanide ligand, while HCN is the cyanide donating agent in the formation of the trinuclear species. The combination of the results with previous data predict the following reactivity order for the nucleophilic agents: CN(-) > Tl(CN)(2)(+) > HCN.  相似文献   

13.
自由基CN、CH、H在燃烧化学、大气化学、天体发光、环境污染等方面占有极为重要的地位,对于这些自由基发光及形成动力学机理的探讨,无疑是重要的.近年来,人们利用亚稳态惰性原子与膨化物碰撞传能,探讨了CN(AB-+X)的化学发光[‘一、发现亚稳态的Ar(‘几,。)原子与H  相似文献   

14.
The optimised structures, electron affinities, and vibrational frequencies of the simplest benzenoid cyanocarbons, namely hexacyanobenzene C6(CN)6, octacyanonaphthalene C10(CN)8, and decacyanoanthracene C14(CN)10, have been studied using carefully calibrated density functional methods (Chem. Rev., 2002, 102, 231-282); the predicted adiabatic electron affinities are 3.53 eV for C6(CN)6, 4.35 eV for C10(CN)8 and 5.02 eV for C14(CN)10, which are significantly larger than those of the analogous benzenoid fluorocarbons as well as tetracyanoethane and tetracyanoquinodimethane.  相似文献   

15.
As an emerging metal‐free semiconductor, covalently bonded carbon nitride (CN) has attracted much attention in photocatalysis. However, drawbacks such as a high recombination rate of excited electrons and holes hinder its potential applications. Tailoring the crystallinity of semiconductors is an important way to suppress unwanted charge recombination, but has rarely been applied to CN so far. Herein, a simple method to synthesize CN of high crystallinity by protonation of specific intermediate species during conventional polymerization is reported. Interestingly, the as‐obtained CN exhibited improved photocatalytic activities of up to seven times those of the conventional bulk CN. This approach, with only a slight change to the conventional method, provides a facile way to effectively regulate the crystallinity of bulk CN to improve its photocatalytic activities and sheds light on large‐scale industrial applications of CN with high efficiency for sustainable energy.  相似文献   

16.
研究了溶剂分别为 THF, H2O/THF, CH3CN/THF以及ROH/THF (R=Me, Et, iso-Pr, tert-Bu)条件下TpRuH(PPh3)- (CH3CN) [Tp=hydrotris(pyrazolyl)borate]催化氢化苯乙烯生成乙基苯的反应, 发现向干燥THF体系中添加微量 H2O, CH3CN或ROH对催化反应都具有显著的促进作用. 催化机理研究表明, 小分子添加物首先取代TpRuH(PPh3)(CH3CN)中的PPh3配体形成中间体TpRuH(CH3CN)L (L=H2O, CH3CN或ROH), 降低空间位阻, CH3CN配体随后被苯乙烯取代生成中间体 TpRuH(H2C=CHPh)L; η2-苯乙烯插入Ru—H键后形成的Ru-烷基中间物与H2反应生成η2-H2配合物 TpRu(CH2CH2Ph)(H2)L或TpRu[CH(CH3)Ph](H2)L, 进而发生σ-复分解反应生成乙基苯完成催化循环.  相似文献   

17.
In recent years, the discovery of efficient catalyst with low price to cyanide (CN) oxidation in normal temperature is a major concern in the industry. In present study, in first step the carbon nanotubes (CNTss) were doped with Ge and the surface of Ge-doped CNTss via O2 molecule were activated. In second step the CN oxidation on activated Ge-CNTss surface via Langmuir–Hinshelwood (LH) and Eley–Rideal (ER) mechanisms was investigated. Results show that O2 activated Ge-CNTs surface can oxidize the CN molecule via Ge-CNTs–O–O* + CN → Ge-CNTs–O–O*–CN → Ge-CNTs–O* + OCN and Ge-CNTs–O* + CN → Ge-CNTs + OCN reactions. Results show that CN oxidation on activated Ge-CNTs surface via the LH mechanism has lower energy barrier than ER mechanism. Finally, calculated parameters reveal that activated Ge-CNTss is acceptable catalyst with low price and high performance for CN oxidation in normal temperature.  相似文献   

18.
Carbon nitride(CN) in CN encapsulated Ni/Al_2O_3(denoted as CN/Ni/Al_2O_3) catalyst was evidenced previously as a material in electron-rich state and possessed H2-dissociative adsorption activity due to the electron doping effect from underlying nickel. In this report, iron oxide loaded on the CN/Ni/Al_2O_3 was synthesized and investigated by Fischer-Tropsch(F-T) synthesis to test the special effect of electron-rich support on the catalytic activity of iron oxide. The Fe/CN/Al_2O_3 and CN/Ni/Al_2O_3 samples were accordingly synthesized for comparison. In Fe/CN/Ni/Al_2O_3, the iron oxide was reduced to magnetite by syngas as evidenced by the in-situ XPS measurements and XRD pattern of used catalyst. Compared with Fe/CN/Al_2O_3, more light hydrocarbons over Fe/CN/Ni/Al_2O_3 were observed. It should be understood by the interaction between iron oxide and support mainly due to the effect of electron-rich state and thus enhanced H_2 adsorption ability. In addition, such a novel support facilitated the CO conversion and retarded the water-gas shift reaction and CO2 formation. The new type of adjustment on electronic state should be useful for novel catalyst design.  相似文献   

19.
Photoinduced intramolecular processes in a tricomponent molecule C60(>(CN)2-DPAF), consisting of an electron-accepting methano[60]fullerene moiety (C60>) covalently bound to an electron-donating diphenylaminofluorene (DPAF) unit via a bridging dicyanoethylenyl group [(CN)2], were investigated in comparison with (CN)2-DPAF. On the basis of the molecular orbital calculations, the lowest charge-separated state of C60(>(CN)2-DPAF) is suggested to be C60*-(>(CN)2-DPAF*+) with the negative charge localized on the fullerene cage, while the upper state is C60(>(CN)2*--DPAF*+). The excited-state events of C60(>(CN)2-DPAF) were monitored by both time-resolved emission and nanosecond transient absorption techniques. In both nonpolar and polar solvents, the excited charge-transfer state decayed mainly through initial energy-transfer process to the C60 moiety yielding the corresponding 1C60, from which charge separation took place leading to the formation of C60*-(>(CN)2-DPAF*+) in a fast rate and high efficiency. In addition, multistep charge separation from C60(>(CN)2*--DPAF*+) to C60*-(>(CN)2-DPAF*+) may be possible with the excitation of charge-transfer band. The lifetimes of C60*-(>(CN)2-DPAF*+) are longer than the previously reported methano[60]fullerene-diphenylaminofluorene C60(>(C=O)-DPAF) with the C60 and DPAF moieties linked by a methanoketo group. These findings suggest an important role of dicyanoethylenyl group as an electron mediating bridge in C60(>(CN)2-DPAF).  相似文献   

20.
A series of new heterometallic coordination polymers has been prepared from the reaction of metal-ligand cations and KAg(CN)(2) units. Many of these contain silver-silver (argentophilic) interactions, analogous to gold-gold interactions, which serve to increase supramolecular structural dimensionality. Compared to [Au(CN)(2)](-) analogues, these polymers display new trends specific to [Ag(CN)(2)](-), including the formation of [Ag(2)(CN)(3)](-) and the presence of Ag...N interactions. [Cu(en)(2)][Ag(2)(CN)(3)][Ag(CN)(2)] (1, en = ethylenediamine) forms 1-D chains of alternating [Ag(CN)(2)](-) and [Ag(2)(CN)(3)](-) units via argentophilic interactions of 3.102(1) A. These chains are connected into a 2-D array by strong cyano(N)-Ag interactions of 2.572(3) A. [Cu(dien)Ag(CN)(2)](2)[Ag(2)(CN)(3)][Ag(CN)(2)] (2, dien = diethylenetriamine) forms a 1-D chain of alternating [Cu(dien)](2+) and [Ag(CN)(2)](-) ions with the Cu(II) atoms connected in an apical/equatorial fashion. These chains are cross-linked by [Ag(2)(CN)(3)](-) units via argentophilic interactions of 3.1718(8) A and held weakly in a 3-D array by argentophilic interactions of 3.2889(5) A between the [Ag(CN)(2)](-) in the 2-D array and the remaining free [Ag(CN)(2)](-). [Ni(en)][Ni(CN)(4)].2.5H(2)O (4) was identified as a byproduct in the reaction to prepare the previously reported [Ni(en)(2)Ag(2)(CN)(3)][Ag(CN)(2)] (3). In [Ni(tren)Ag(CN)(2)][Ag(CN)(2)] (5, tren = tris(2-aminoethyl)amine), [Ni(tren)](2+) cations are linked in a cis fashion by [Ag(CN)(2)](-) anions to form a 1-D chain similar to the [Au(CN)(2)](-) analogue. [Cu(en)Cu(CN)(2)Ag(CN)(2)] (6) is a trimetallic polymer consisting of interpenetrating (6,3) nets stabilized by d(10)-d(10) interactions between Cu(I)-Ag(I) (3.1000(4) A). Weak antiferromagnetic coupling has been observed in 2, and a slightly stronger exchange has been observed in 6. The Ni(II) complexes, 4 and 5, display weak antiferromagnetic interactions as indicated by their relatively larger D values compared to that of 3. Magnetic measurements on isostructural [Ni(tren)M(CN)(2)][M(CN)(2)] (M = Ag, Au) show that Ag(I) is a more efficient mediator of magnetic exchange as compared to Au(I). The formation of [Ni(CN)(4)](2)(-), [Ag(2)(CN)(3)](-), and [Cu(CN)(2)](-) are all attributed to secondary reactions of the dissociation products of the labile KAg(CN)(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号