首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Geometry optimizations and vibrational frequencies of B5C and C5B clusters were calculated with the Becke-3LYP method using the 6-311+G(d) basis set and some stable configurations of B5C and C5B clusters have been found. The most stable structure of B5C is a planar six-membered ring. However, for C5B clusters, the most stable structure is linear with a boron atom in position 3. Various configurations of B5C clusters containing three-membered boron rings have predominance in energy, whereas various configurations of C5B clusters containing three-membered carbon rings are disadvantageous in energy. In B5C clusters, isomer2 can be converted into isomer1 by surmounting an energy barrier of 43.83 kJ.mol(-1). In C5B clusters, the conversions of isomer5 into isomer2 and isomer7 into isomer2 have energy barriers of 19.66 and 20.57 kJ.mol(-1), respectively.  相似文献   

2.
The molecular structure of the trans isomer of metal-free phthalocyanine (H2Pc) is determined using the gas electron diffraction (GED) method and high-level quantum chemical calculations. B3LYP calculations employing the basis sets 6-31G**, 6-311++G**, and cc-pVTZ give two tautomeric isomers for the inner H atoms, a trans isomer having D2h symmetry and a cis isomer having C2v symmetry. The trans isomer is calculated to be 41.6 (B3LYP/6-311++G**, zero-point corrected) and 37.3 kJ/mol (B3LYP/cc-pVTZ, not zero-point corrected) more stable than the cis isomer. However, Hartree-Fock (HF) calculations using different basis sets predict that cis is preferred and that trans does not exist as a stable form of the molecule. The equilibrium composition in the gas phase at 471 degrees C (the temperature of the GED experiment) calculated at the B3LYP/6-311++G** level is 99.8% trans and 0.2% cis. This is in very good agreement with the GED data, which indicate that the mole fraction of the cis isomer is close to zero. The transition states for two mechanisms of the NH tautomerization have been characterized. A concerted mechanism where the two H atoms move simultaneously yields a transition state of D2h symmetry and an energy barrier of 95.8 kJ/mol. A two-step mechanism where a trans isomer is converted to a cis isomer, which is converted into another trans isomer, proceeds via two transition states of C(s) symmetry and an energy barrier of 64.2 kJ/mol according to the B3LYP/6-311++G** calculation. The molecular geometry determined from GED is in very good agreement with the geometry obtained from the quantum chemical calculations. Vibrational frequencies, IR, and Raman intensities have been calculated using B3LYP/6-311++G**. These calculations indicate that the molecule is rather flexible with six vibrational frequencies in the range of 20-84 cm(-1) for the trans isomer. The cis isomer might be detected by infrared matrix spectroscopy since the N-H stretching frequencies are very different for the two isomers.  相似文献   

3.
The results of an ab initio and semiempirical study of Clar Goblet (1), a C(38)H(18) non-Kekulé diradical LPAH, and its constitutional isomers 4 and 5 are reported. Planar D(2)(h)-1 was only 87.4 (triplet) and 83.8 (singlet) kJ/mol less stable than its planar Kekulé isomer C(2)(v)-6 (at (U)B3LYP/6-31G). Planar C(s)-4 was 63.6 (triplet) and 76.5 (singlet) kJ/mol less stable than 6. Overcrowded C(1)-5 was 80.1 (triplet) and 98.1 (singlet) kJ/mol less stable than 6. In concealed non-Kekulé 1, the singlet was more stable then the triplet by 3.6 kJ/mol, while in nonconcealed non-Kekulé 4 and 5, the triplets were more stable than the corresponding singlets by 12.9 and 18.1 kJ/mol, respectively, in accordance with theory. The spin density in 1, 4, and 5 is delocalized throughout the positions corresponding to active peri-peri coupling positions of the radical anion of naphthanthrone (2). The bond lengths in 1, 4, and 5 are in the range expected for aromatic compounds, except for the central carbon-carbon bonds, which are considerably elongated. A certain stabilization is evident in the homodesmotic reaction singlet-1 + 10 + 10 --> 11 + 3 + 3, indicating a "communication" between the two benzo[cd]pyrenyl radical (3) units of diradical 1. The HOMA indices indicate that in both singlet 1 and triplet 1 all of the rings except the central one have a significant aromatic character. The central ring is essentially antiaromatic, having negative HOMA index (-0.140 at UB3LYP/6-31+G). The stabilities of 1(2)(-) and 1(2+) are decreased relative to 3(-) and 3(+), respectively.  相似文献   

4.
Planar and overcrowded LPAHs C(34)H(18) anthra[9,1,2-cde]benzo[rst]penaphene (1), benzo[rst]phenanthro[10,1,2-cde]pentaphene (2), tetrabenzo[a,cd,j,lm]perylene (3), tetrabenzo[a,cd,lm,o]perylene (4), and LPAHs C(38)H(18) anthra[2,1,9,8-klmno]naphtho[3,2,1,8,7-vwxyz]hexaphene (5), dianthra[2,1,9,8-stuva;2',1',9',8'-hijkl]pentacene (6), dibenzo[jk,uv]dinaphtho[2,1,8,7-defg;2',1',8',7'-opqr]perylene (7), diphenanthro[5,4,3-abcd;3',4',5'-lmno]perylene (8), potential products of peri-peri reductive couplings of benzanthrone and of naphthanthrone, respectively, were subjected to an ab initio study with emphasis on overcrowding motifs. The HF and DFT B3LYP methods were employed to calculate energies and geometries of the minima conformations of these LPAHs. The most stable LPAHs in these series were found to be planar C(2)(v)()-1 and C(2)(v)()-5, respectively. Among overcrowded LPAHs, twisted-folded C(2)-3 and C(2)-7 with two cove regions were found to be more stable than their respective isomers twisted-folded C(2)-4 and C(2)-8 with one fjord region each, in contrast to the semiempirical predictions. The energy differences between the most stable planar isomer and the overcrowded isomers were significantly smaller in the C(38)H(18) series, than in the C(34)H(18) series. Overcrowded twisted-folded C(2)-7 with two coves was found to be more stable than planar C(2)(h)()-6 by 2.0 kJ/mol (at B3LYP/6-311G), indicating enhanced role of aromatic stabilization and decreased destabilization due to overcrowding, with increasing the number of aromatic rings. Heats of formation of LPAHs 1-8 were derived from the ab initio total energies (at B3LYP/6-31G). A search of the conformational spaces of 3 and 4 revealed an anti-folded local minimum C(i)()-3 and a syn-folded transition state C(s)()-4, 23.7 and 120.3 kJ/mol higher in energy than the twisted-folded C(2)-3 and C(2)-4, respectively (at B3LYP/6-31G). The cove and fjord torsion angles in the C(38)H(18) series were found to be smaller than in the C(34)H(18) series. The nonbonding distances between carbon atoms at cove and fjord regions of the overcrowded LPAHs were found to be smaller than the sum of the van der Waals radii of two carbon atoms  相似文献   

5.
The 2385 classical isomers and four nonclassical isomers of fullerene C62 have been studied by PM3, HCTH/3-21G//SVWN/STO-3G, B3LYP/6-31G(d)//HCTH/3-21G, and B3LYP/6-31G(d)//B3LYP/6-31G(d). The Cs:7mbr isomer, with a chain of four adjacent pentagons surrounding a heptagon, is predicted to be the most stable isomer, followed by C2v:4mbr which is 3.15 kcal/mol higher in energy. C2:0032 with three pairs of adjacent pentagons is the most stable isomer in the classical framework. To clarify the relative stabilities of C62 isomers at high temperatures, the entropy contributions are taken into account on the basis of the Gibbs energy at the B3LYP/6-31G(d) level. Analyses reveal that Cs:7mbr prevails in a wide temperature range. The vibrational frequencies of the five most stable C62 fullerene isomers are also predicted at the B3LYP/6-31G(d) level, and the simulated IR spectra show important differences in positions and intensities of the vibrational modes for different isomers. The nucleus-independent chemical shift and the density of states of the three most stable isomers show that the square in C2v:4mbr and the adjacent pentagons in Cs:7mbr and C2:0032 possess high chemical reactivity. In addition, the electronic spectra and second-order hyperpolarizabilities are determined by means of ZINDO and the sum-over-states mode. The intensity-dependent refractive index gamma(-omega; omega, omega, -omega) at omega = 2.3305 eV of Cs:7mbr is very large because of resonance with the external field. The second-order hyperpolarizabilities of the five most stable isomers of C62 are predicted to be larger than those of C60.  相似文献   

6.
采用B3LYP/6-311+G**方法, 研究了一种新型的包含平面四配位碳(ptC)二硼有机化合物C9B2H6的结构、稳定性和振动频率. 计算结果表明, C9B2H6结构的稳定性和两个硼原子的位置有很大关系, 硼原子起给予σ电子和接受π电子的作用. 在C9B2H6的15个异构体中, 最稳定的结构是具有C2v对称性的异构体(1,5), 在异构体(1,5)中, 两个硼原子位于同一个六元环中且与ptC相邻. 而且占据的π轨道说明异构体(1,5)具有10个π电子, 满足4n+2规则. 计算的核独立化学位移(NICS)值显示异构体(1,5)强的芳香性位于C9B2H6的两个三元环而不是两个六元环上.  相似文献   

7.
周立新 《中国化学》2000,18(6):808-814
Results of ab initio self-consistent-field (SCF) and density functional theory (DFT) calculations of the gas-phase structure,acidity (free energy of deprotonation,G0) and aro-maticity of tetraselenosquaric acid (3,4-diselenyl-3-cy-dobutene-1,2-diselenone,H2C4Se4) are reported.The global minimum found on the potential energy surface of tetraselenosquaric acid presents a planar conformation.The ZZ iso-mer was found to have the lowest energy among the three planar conformers and the ZZ and ZE isomers are very dose in energy.The optimized geometric parameters exhibit a bond length equalization relative to reference compounds,cyclobu-tanediselenone,and cydobutenediselenol.The computed aromatic stabilization energy (ASE) by homodesmotic reaction is -77.4 (MP2(fu)/6 - 311 G //RHF/6 - 311 G) and - 54.8 kJ/mol (B3LYP/6 - 311 G //B3LYP/6 -311 G).The aromaticity of tetraselenosquaric add is indicated by the calculated diamagnetic susceptibility exaltation (A) - 19.13 (CSGT(IGAEM) - RHF/6 - 311 G// RHF/6-  相似文献   

8.
1 INTRODUCTION The intermolecular interaction of bases in DNA or RNA is of immense interest and significance to che- mists and biologists alike. The interactions of these bases with metal cations, solvent molecules and other small molecules or ions would affect the struc- ture and biological properties or recognition process,which has been investigated widely[1~8]. Boron contained compounds are electron deficient com- pounds and have been extensively used as catalysts in chemical react…  相似文献   

9.
Ab initio calculations of the potential energy surface for the C3(1Sigmag+)+C2H2(1Sigmag+) reaction have been performed at the RCCSD(T)/cc-pVQZ//B3LYP/6-311G(d,p) + ZPE[B3LYP/6-311G(d,p)] level with extrapolation to the complete basis set limit for key intermediates and products. These calculations have been followed by statistical calculations of reaction rate constants and product branching ratios. The results show the reaction to begin with the formation of the 3-(didehydrovinylidene)cyclopropene intermediate i1 or five-member ring isomer i7 with the entrance barriers of 7.6 and 13.8 kcal/mol, respectively. i1 rearranges to the other C5H2 isomers, including ethynylpropadienylidene i2, singlet pentadiynylidene i3, pentatetraenylidene i4, ethynylcyclopropenylidene i5, and four- and five-member ring structures i6, i7, and i8 by ring-closure and ring-opening processes and hydrogen migrations. i2, i3, and i4 lose a hydrogen atom to produce the most stable linear isomer of C5H with the overall reaction endothermicity of approximately 24 kcal/mol. H elimination from i5 leads to the formation of the cyclic C5H isomer, HC2C3, +H, 27 kcal/ mol above C3+C2H2. 1,1-H2 loss from i4 results in the linear pentacarbon C5+H2 products endothermic by 4 kcal/mol. The H elimination pathways occur without exit barriers, whereas the H2 loss from i4 proceeds via a tight transition state 26.4 kcal/mol above the reactants. The characteristic energy threshold for the reaction under single collision conditions is predicted be in the range of approximately 24 kcal/mol. Product branching ratios obtained by solving kinetic equations with individual rate constants calculated using RRKM and VTST theories for collision energies between 25 and 35 kcal/mol show that l-C5H+H are the dominant reaction products, whereas HC2C3+H and l-C5+H2 are minor products with branching ratios not exceeding 2.5% and 0.7%, respectively. The ethynylcyclopropenylidene isomer i5 is calculated to be the most stable C5H2 species, more favorable than triplet pentadiynylidene i3t by approximately 2 kcal/mol.  相似文献   

10.
The relative gas-phase energetics of several low-lying isomers of 1,7-dioxaspiro[5.5]undecane and 1,7,9-trioxadispiro[5.1.5.3]hexadecane have been calculated with second-order Mller-Plesset perturbation theory and basis sets as large as aug-cc-pVQZ. Relative energies in THF, dichloromethane, acetone, and DMSO have been estimated with corrections from polarized continuum model calculations at the B3LYP/6-311+G(d) level. In the most stable conformation of 1,7-dioxaspiro[5.5]undecane, both rings adopt chair conformations, and both oxygens are axially disposed (2A). It is more than 2 kcal mol(-1) more stable than all the other conformers. In agreement with previous work, the "twist-boat" trans isomer (3A) is the most stable isomer of 1,7,9-trioxadispiro[5.1.5.3]hexadecane. However, in contrast to this earlier study, an "all-chair" conformation (3B) is found to be the most stable cis isomer of 1,7,9-trioxadispiro[5.1.5.3]hexadecane (E approximately 0.5 kcal mol(-1) in acetone and DMSO). Gauge-independent atomic orbital computations at the B3LYP/6-311+G(d) level indicate that this is the only cis isomer with (13)C NMR chemical shifts that are qualitatively consistent with the experimental spectra.  相似文献   

11.
硼碳团簇BnC2 (n=1~6)的理论研究   总被引:1,自引:0,他引:1  
王若曦  张冬菊  朱荣秀  刘成卜 《化学学报》2007,65(19):2092-2096
应用密度泛函理论在B3LYP/6-311+G(d)水平上研究了硼碳团簇BnC2 (n=1~6)的几何结构、生长机制和相对稳定性. 计算结果表明, 对于n=2~6的簇, 平面多环状构型为最稳定的结构, 其中C原子分布于环的顶点、有尽可能多的三配位硼原子和尽可能多的B—C键. 碳原子作为杂原子倾向掺杂于团簇的顶点位置, 它的掺杂不改变硼团簇的主体结构. 与平面多环状结构相比, 随着簇尺寸的增大, 三维结构和线性链结构更不稳定. 在低能线性结构中, C原子位于链两侧的第二个位置. 计算的碎片分裂能、递增键能以及HOMO-LUMO能隙表明, B4C2为幻数簇.  相似文献   

12.
Molecular structure of 1,1,1-trifluoro-pentane-2,4-dione, known as trifluoro-acetylacetone (TFAA), has been investigated by means of Density Functional Theory (DFT) calculations and the results were compared with those of acetylacetone (AA) and hexafluoro-acetylacetone (HFAA). The harmonic vibrational frequencies of both stable cis-enol forms were calculated at B3LYP level of theory using 6-31G** and 6-311++G** basis sets. We also calculated the anharmonic frequencies at B3LYP/6-31G** level of theory for both stable cis-enol isomers. The calculated frequencies, Raman and IR intensities, and depolarization ratios were compared with the experimental results. The energy difference between the two stable cis-enol forms, calculated at B3LYP/6-311++G**, is only 5.89 kJ/mol. The observed vibrational frequencies and Raman and IR intensities are in excellent agreement with the corresponding values calculated for the most stable conformation, 2TFAA. According to the theoretical calculations, the hydrogen bond strength for the most stable conformer is 57 kJ/mol, about 9.5kJ/mol less than that of AA and about 14.5 kJ/mol more than that of HFAA. These hydrogen bond strengths are consistent with the frequency shifts for OH/OD stretching and OH/OD out-of-plane bending modes upon substitution of CH(3) groups with CF(3) groups. By comparing the vibrational spectra of both theoretical and experimental data, it was concluded that 2TFAA is the dominant isomer.  相似文献   

13.
The infrared (IR) spectra of the supersonic-jet cooled 9H- and 7H-tautomers of 2-aminopurine (2AP) and of the 9H-2-aminopurine·H(2)O monohydrate clusters have been measured by mass- and species-selective IR-UV double resonance spectroscopy in the 3200-3900 cm(-1) region, covering the N-H and O-H stretching vibrations. The spectra are complemented by density functional (B3LYP and PW91) and by second-order M?ller-Plesset (MP2) calculations of the electronic energies and vibrational frequenciesof the respective 2AP tautomers and clusters. The 9H- and 7H-2-aminopurine tautomers were definitively identified by the shifts of their NH and NH(2) symmetric and asymmetric stretching frequencies and by comparison to the B3LYP/TZVP calculated IR spectra. The H-bond topologies of the two previously observed 9H-2-aminopurine·H(2)O isomers (Sinha. R. K.; et al. J. Phys. Chem. A2011, 115, 6208) are definitively identified as the "sugar-edge" isomer A and the "trans-amino-bound" isomer B by comparing their IR spectra to the calculated frequencies and IR intensities of the cluster isomers A, B, C, and D, as well as to the IR spectrum of 9H-2AP. The sugar-edge isomer A involves N9-H···OH(2) and HOH···N3 hydrogen bonds and is predicted to be the most stable form. The amino-bound isomer B involves NH(2)···OH(2) and HOH···N1 hydrogen bonds and is calculated to lie 2.5 kJ/mol above isomer A. The H-bond topology of the "cis-amino-bound" isomer C is symmetrically related to isomer B, with a hydrogen bond to the N3 of the pyrimidine group. However, it is calculated to lie 7 kJ/mol above isomer A and indeed is not observed in the supersonic jet. Isomer D involves a single H-bond to the N7 position, is predicted to be 14 kJ/mol above A and is therefore not observed.  相似文献   

14.
In light of the very recent significant discrepancies on the global isomer of the sept-atomic molecule OB6, we performed a detailed potential energy surface survey of OB6 covering various isomeric forms. We showed that at the CCSD(T)/6-311+G(2df)//B3LYP/6-311+G(d) level, the planar knife-like isomer 01 with a –BO moiety has the lowest energy, followed by the planar belt-like isomer 02 at 22.6 kcal/mol. Another isomer 05 at 33.1 kcal/mol can be viewed as the direct O-adduct of the pentagonal pyramid B6. Kinetically, the three isomers 01, 02 and 05 all have considerable barriers (19–29 kcal/mol) (obtained at B3LYP/6-311+G(d) level) against isomerization. However, other isomers either have much higher energy or possess much smaller conversion barriers and are thus of little likeliness for isolation. Moreover, though being isoelectronic to the well-known CB 6 2? molecule, OB6 does not have any kinetically stabilized wheel-like isomers with O or B centers. The three OB6 isomers 01, 02 and 05 await future laboratory studies. The detailed results reported in this paper are expected to provide useful information for understanding the growing process of boron oxides, O-doping and oxidation mechanism of boron clusters.  相似文献   

15.
The structures of lithiated and sodiated alpha-methyl-proline (alpha-Me-Pro) and structural isomers, both with and without a water molecule, are investigated using blackbody infrared radiative dissociation (BIRD) and density functional theory. From the BIRD kinetic data measured as a function of temperature, combined with master equation modeling of these data, threshold dissociation energies for the loss of a water molecule from these clusters are obtained. These energies are 77.5 +/- 0.5 and 53 +/- 1 kJ/mol for lithiated and sodiated alpha-Me-Pro, respectively. For the nonzwitterionic isomer, proline methyl ester, these values are 3.0-4.5 kJ/mol higher. These results provide compelling experimental evidence that alpha-Me-Pro is zwitterionic in these clusters. Theory at the temperature corrected B3LYP/6-311++G**//B3LYP/6-31++G** level indicates that the salt-bridge or zwitterionic forms of lithiated and sodiated alpha-Me-Pro are between 17 and 23 kJ/mol lower in energy than the nonzwitterionic or charge-solvated forms and that attachment of a single water molecule does not significantly change the structure or the relative energies of these clusters. The proton affinity of proline is 8 kJ/mol higher than that of alpha-Me-Pro, indicating that lithiated and sodiated singly hydrated proline should also be zwitterionic.  相似文献   

16.
在密度泛函和从头算理论水平下计算了单重态的NC2S+离子的结构、能量、光谱以及稳定性. 在B3LYP/6-311G(d)水平下, 得到8个异构体, 它们由15个过渡态相连接. 在CCSD(T)/6-311+G(2df)//QCISD/6-311G(d)+ZPVE水平下, 得到能量最低的异构体是直线型的具有1Σ电子态的NCCS+(1)(0.0 kJ/mol), 其次是直线型的异构体CNCS+(2)(54.8 kJ/mol). 两个低能量的异构体1和2及另外一个高能量的直线型异构体CCNS+(3)(323.8 kJ/mol)都具有相当大的动力学稳定性, 这三个异构体在具备一定条件的实验室和星际条件下是可以进行观测的. 分析了这3个异构体的成键性质.  相似文献   

17.
Boron and mixed‐boron clusters have received considerable attention because of their wide applications and their essential roles in advancing chemical bonding models. Bearing the bright prospects as building blocks to form novel polymeric materials, the sulfur‐rich boron sulfides have been greatly studied. However, the knowledge of the boron‐rich boron sulfides is much rare. In this article, we report an extensive theoretical study on the structural, energetic, and stability features of a hitherto unknown septa‐atomic cluster B6S at the CCSD(T)/6‐311+G(2df)//B3LYP/6‐311+G(d) level. The local minimum isomers were obtained through our recently developed program “grid‐based comprehensive isomeric search algorithm.” The results show that the planar knife‐like isomer B5(?BS) 01 (0.0 kcal/mol) containing the ?BS moiety is the lowest energy, followed by the quasi‐planar belt‐like isomer B6(>S) 02 (6.7 kcal/mol) and the pyramid‐like isomer B6(>S) 03 (8.4 kcal/mol). Notably, the three singlet isomers all have good kinetic stability on the basis of the potential energy surface analysis. The B/S‐centered wheel‐like isomers are unfavorable in thermodynamics and kinetics. The triplet state structures generally can not compete with the singlet ones. The results are compared to the analogous and isoelectronic cluster B6O. Our work is expected to provide useful information for understanding the structures and stability of boron sulfides. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

18.
19.
We report density functional and coupled cluster calculations on numerous monocyclic and bicyclic (CH)12(*-) isomers. At the RCCSD(T)/cc-pVDZ//UB3LYP/6-31+G* level, a nearly planar, bond-equalized radical anion of 1,7-di-trans-[12]annulene (4a(*-)) is lowest in energy; several other isomers and conformations lie within 3 kcal/mol of 4a(*-). RCCSD(T)/AUG-cc-pVDZ//UB3LYP/6-31+G* results place the all-cis isomer 3(*-) slightly below 4a(*-) in energy. Validation studies on the heptalene radical anion, [16]annulene radical anion, and tri-trans-[12]annulene radical anion indicate that electron spin resonance (ESR) hyperfine coupling constants (aH values) computed at the BLYP/EPR-III level on DFT geometries give much better agreement with experimental values than those computed using B3LYP/6-31G*. We were unable to locate any C12H12(*-) isomer that could account for the ESR spectrum previously attributed to a highly twisted structure for the 1,7-di-trans-[12]annulene radical anion. Our computed energetic and ESR data for [12]annulene radical anions and their valence isomers suggest that 4a(*-) may have been made, yet its ESR spectrum was incorrectly assigned to the bicyclic isomer 6b(*-). Finally, the computed (1)H NMR shift values of the dianion of 4 reveal a distinct diatropic ring current that should aid in its characterization.  相似文献   

20.
用密度泛函理论(DFT)的B3LYP方法, 在6-31G*水平上对(BCO)+n(n=1-12)团簇的几何结构、电子结构、振动频率等性质进行了理论研究. 结果表明, (BCO)+n团簇的基态结构均为羰基端配位(μ1-CO)结构, 且含三元环和五元环数目越多或四元环和六元环的数目越少, 相应的结构越稳定. 能量分析得到, n 为奇数的(BCO)+n团簇比n为偶数的稳定.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号