首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
A solvent extraction preconcentration as well as separation method involving ammonium pyrrolinedithiocarbamate (APDC) and 4-methyl-2-pentanone (MIBK) in conjunction with neutron activation analysis (NAA) was developed for the simultaneous measurement of low levels of inorganic arsenic, antimony and selenium species in natural waters. Several critical factors affecting the APDC/MIBK-NAA method were studied in detail including the selection of chelating agent, solvent, aqueous pH for the extraction of six species as well as a few organoarsenic species as representatives for organic species, the stability of the complexes in organic phase, phase volume ratios for extraction and back-extraction steps, and the reduction of the species from higher to lower oxidation state. The detection limits for arsenic, antimony and selenium were found to be as low as 0.026, 0.010 and 0.12 μg L?1, respectively. Trace amounts of As(III), As(V), Sb(III), Sb(V), and Se(IV) in different types of natural water sample and two water certified reference materials were measured using the APDC/MIBK-NAA method.  相似文献   

2.
应用自行设计的化学蒸气发生-四通道无色散原子荧光光谱仪,建立了同时测定水样中As、Sb、Se、Hg的新方法.在实验中优化了四元素同时化学蒸气发生条件和测定的最佳工作参数.在样品预处理阶段用HCl将Se6+还原为Se4+,然后用质量浓度5 g/L硫脲将As5+和Sb5+还原为As3+和Sb3+.在最佳条件下,方法对As、Sb、Se、Hg的检出限分别为0.05、0.03、0.05、0.01 ng/mL(3d);RSD分别为0.42%、0.74%、0.97%、1.0%(对5 ng/mL As、Sb、Se和0.5ng/mL Hg混合标准,n=7).用所建立的方法对不同类型水样中的As、Sb、Se、Hg进行了同时测定,测定结果与用标准方法测定所得结果之间无明显差异,各元素的加标回收率在93%~105%.  相似文献   

3.
A method combining prior collection of gaseous products with subsequent neutron activation analysis has been developed for simultaneous determination of traces of arsenic, mercury, antimony and selenium in biological materials. The generation of hydrides of arsenic, antimony and selenium and cold vapor of mercury in the vapor generaion and collection system was investigated by the use of radiotracers of the respective elements. The result indicates that selenium and mercury can be completely evaporated from the digested sample solution in 5M HCl with the addition of 5% sodium tetrahydroborate solution, while additional reduction proces by potassium iodide and ascorbic acid is needed for complete evaporation of arsenic and antimony. The gaseous products were collected in a quartz tube for neutron irradiation. The detection limits of these elements were fount to be in the range of 10–7 to 10–8 g under the present experimental conditions. The reliability was checked with NBS standard reference materials.  相似文献   

4.
粗二氧化碲作为碲精炼或碲化工产品生产的重要原料,其中共存元素铜、铅、砷、锑、铋、硒含量的准确测定对于生产过程质量控制和贸易结算具有重要意义,但目前没有粗二氧化碲中铜、铅、砷、锑、铋、硒含量检测的标准分析方法。采用王水和饱和氟化氢铵分解试样,在王水和酒石酸介质中,选用Cu 327.393 nm、Pb 220.353 nm、Sb 217.582 nm、Bi 223.061 nm、As 193.696 nm、Se 196.026 nm为分析谱线,采用电感耦合等离子体发射光谱(ICP-AES)法测定粗二氧化碲中铜、铅、锑、铋、砷和硒含量。各元素校准曲线的相关系数均大于0.999;铜、铅、锑、铋、砷和硒的检出限分别为0.0004%、0.0005%、0.0006%、0.0007%、0.0004%和0.0007%,定量检出限分别为0.0012%、0.0016%、0.0020%、0.0025%、0.0013%和0.0025%。按照实验方法测定5个粗二氧化碲样品中铜、铅、锑、铋、砷和硒,测定结果的相对标准偏差(RSD,n=7)为0.79%~4.8%,加标回收率为96.0%~103%。方法简单,精密度和准确度较高,可用于测定粗二氧化碲中铜、铅、砷、锑、铋、硒含量。  相似文献   

5.
The article presents the application of in-situ extraction from a solid sample in order to determine metalloids: arsenic and antimony. The reaction vessel, in which hydride generation followed the extraction, was connected with the atomic absorption spectrometer (AAS) in a fast sequential mode. Deionised water, phosphatic buffer (pH?=?6) and hydrochloric acid (2?mol?L?1) were used as the extractants to determine the concentration of metalloids in the following fractions: easily (water) leachable, exchangeable, and acid leachable. Two different types of sediments were used while developing the application: lake bottom sediments and tsunami deposits. Both types of the sediments samples (5–20?mg) were placed directly in the reaction vessel and after in-situ extraction the determination of the metalloids was conducted, what allowed to assess concentration of arsenic and antimony during single analysis. The results obtained from the analyses of both sediments types were compared with the results from traditional off-line extraction. As a result a good correspondence with both hydrochloric acid and phosphatic buffer was found. The methodology of solid samples analysis was developed with detection limits of 50?ng?g?1 (for As) and 30?ng?g?1 (for Sb) for 10?mg of a solid sample.  相似文献   

6.
《Analytical letters》2012,45(16):2563-2571
Dispersive liquid–liquid microextraction (DLLME) technique combined with electrothermal atomic absorption spectrometry (ET-AAS) was proposed for determination of antimony(III) and total antimony at very low concentrations in water samples. The N-benzoyl-N-phenylhydroxylamine (BPHA) was used as a chelating agent, and chloroform and ethanol were used as extraction and disperser solvents, respectively. The effect of various experimental parameters on the extraction and determination was investigated. The detection limits (3σ) were 0.005 μg L?1 for Sb(III) and 0.008 μg L?1 for total Sb. The developed method was applied successfully to the determination of Sb(III) and total Sb in natural water samples.  相似文献   

7.
Traces amounts of arsenic and antimony in water samples were determined by gas chromatography with a photoionization detector after liquidnitrogen cold trapping of their hydrides. The sample solution was treated with sodium hydroborate (NaBH4) under weak-acid conditions for arsenic(III) and antimony(III) determination, and under strong-acid conditions for arsenic(III+V) and antimony(III+V) determination. Large amounts of carbon dioxide (CO2) and water vapor obscured determination of arsine and stibine. Better separation from interference could be achieved by removing CO2 and water vapor in two tubes containing sodium hydroxide pellets and calcium chloride, respectively. The detection limits of this method were 1.8 ng dm?3 for arsenic and 9.4 ng dm?3 for antimony in the case of 100-cm3 sample volumes. Therefore, it is suitable for determination of trace arsenic and antimony in natural waters.  相似文献   

8.
It has been shown that 2N sodium sulphide reagent can be successfully used in separating tellurium, molybdenum, antimony or rhenium from bismuth., platinum, gold, selenium, rhenium, arsenic, molybdenum or tellurium from cadmium; platinum, gold, selenium, rhenium, arsenic, molybdenum, tellurium or antimony from indium.It is not possible to separate quantitatively arsenic, platinum, gold or selenium from bismuth; antimony from cadmium; and tin from bismuth, cadmium or indium.  相似文献   

9.
Cabredo S  Galbán J  Sanz J 《Talanta》1998,46(4):631-638
A cold trap system for the simultaneous determination of arsenic, antimony, selenium and tin by continuous hydride generation and gas phase molecular absorption spectrometry is described. The hydride generation is carried out in two steps; first, tin hydride is generated at low acidity and second, arsenic, antimony and selenium hydrides are formed at higher acidity. All the hydrides are collected in a liquid nitrogen cryogenic trap and transported to the flow cell of a diode array spectrophotometer, where molecular absorption spectra are obtained in the 190-250 nm range. Five calibration solutions containing arsenic, antimony, selenium and tin are solved using multiple linear regression analysis. Tests are performed in order to extend the same manifold to other hydrides but no signals are obtained for bismuth, cadmium, lead, tellurium and germanium. Under the optimum conditions found and using the wavelengths of maximum sensitivity (190, 198, 220 and 194 nm), the analytical characteristics of each element are calculated. The detection limits are 0.050, 0.020, 0.12 and 1.1 mug ml(-1) and the RSD values are 3.7, 3.1, 3.5 and 3.0% for As, Sb, Se and Sn, respectively. The method is applied to As, Sb, Se and Sn determination in natural spiked water samples.  相似文献   

10.
A method for the neutron activation analysis of arsenic, selenium and antimony has been developed. A radiochemical separation is performed by distillation followed by precipitation of the individual elements. Selenium and arsenic are precipitated by reduction to the elemental form while antimony is precipitated as sulfide. The chemical yields and detection limits using 0.5 g samples are the following: As 90–100%, 0.4 ppb, Se 80–100%, 8 ppb and Sb 50–70%, 0.2 ppb. Results from the analysis of nine international biological standard samples are given.  相似文献   

11.
Solidified floating organic drop microextraction was applied as a separation/preconcentration step prior to the electrothermal atomic absorption spectrometric (ETAAS) determination of ultra trace of antimony species. The method was based on the formation of an extractable complex between Sb(III) and ammonium pyrrolidinedithiocarbamate at pH ~ 5, while Sb(V) was remained in the aqueous phase. The antimony extracted into 1-undecanol was determined by ETAAS. Total antimony was determined after the reduction of Sb(V) to Sb(III) with potassium iodide and ascorbic acid. The amount of Sb(V) was determined from the difference of concentration of total antimony and Sb(III). Under the optimum conditions an enhancement factor of 437.5 and a detection limit of 5.0 ng L?1for the preconcentration of 25 mL of sample was achieved. The relative standard deviation at 300 ng L?1 of antimony was found to be 3.5 % (n = 6). The proposed method was successfully applied to the determination of antimony in tea, basil and natural water samples.  相似文献   

12.
T Guerin  M Astruc  A Batel  M Borsier 《Talanta》1997,44(12):133
An anion exchange HPLC-ICP-MS procedure allowing the simultaneous multielemental speciation analysis of arsenic, selenium, antimony and tellurium has been developed. Four arsenic species (AsIII, AsV, monomethylarsonic acid and dimethylarsinic acid), two selenium species (SeIV and SeVI) may be determined in a single run as well as one antimony (SbV) and one tellurium species (TeVI). Alternatively Sb and/or Te may be used as internal standards for As and Se speciation studies. Optimisation of ICP-MS conditions led to satisfactory relative (0.01 (SbV) to 1.8 (SeVI) ng ml−1) and absolute detection limits (1–180 pg). Reproducibility ranged from 3.1 to 5.6% and the linearity was verified in the 0–200 ng ml−1 range.  相似文献   

13.
Arsenic, selenium and antimony were determined in four different tin samples. After distillation from HBr?H2SO4 medium arsenic and selenium were precipitated with thioacetamide, and antimony was subsequently separated by deposition on iron powder. The separated samples were counted on a high-resolution Ge(Li) γ-spectrometer. The sensitivity of the method is highly satisfactory.  相似文献   

14.
Yu MQ  Liu GQ  Jin Q 《Talanta》1983,30(4):265-270
A novel procedure for determination of trace As(III) and As(V), Sb(III) and Sb(V), Se(IV) and Se(VI), Te(IV) and Te(VI) in water by atomic-absorption spectrophotometry after separation and enrichment with "thiol cotton" and hydride generation has been established. The sorption behaviour of various oxidation states of arsenic, antimony, selenium and tellurium, and the conditions of quantitative sorption and desorption of these species were studied. The procedures for reducing species from higher oxidation states were optimized. Interferences from other species and their elimination were investigated. The selectivity of the procedure for the determination of species in higher and lower oxidation states was examined. The procedure has been successfully used to determine arsenic, antimony, selenium and tellurium in water, in the range from pg ml to ng ml . The recoveries for added spikes were in the range 90-110%, with coefficients of variation in the range 3-8%  相似文献   

15.
《Analytical letters》2012,45(12):1922-1932
The optimization of a Differential-Pulse Stripping Voltammetry (DPSV) procedure for arsenic speciation determination, using sodium diethyldithiocarbamate (DDTC-Na) as complexing agent, is described. An experimental design methodology was used to select the optimal experimental conditions. A robust regression method was used for the calibrations under these conditions that eliminate anomalous points. Electroinactive As(V) was reduced to As(III) with sodium thiosulfate prior to determination. The detection limit obtained was 1.95 × 10?9 mol dm?3. This procedure was successfully applied to the determination of arsenic speciation in groundwater.  相似文献   

16.
A novel magnetic dispersive solid phase extraction method using magnetic multi-walled carbon nanotubes modified with 5-mercapto-3-phenyl-1,3,4-thiadiazole-2-thione potassium salt (bismuthiol II) (MMWCNTs@Bis) as the sorbent was developed for the separation and preconcentration of inorganic selenium (IV) prior to its determination by electrothermal atomic absorption spectrometry. The prepared MMWCNTs@Bis sorbent was characterised by Fourier transform infrared spectroscopy, scanning electron microscopy, vibrating sample magnetometer and X-ray diffraction. Total selenium was determined after reduction of Se(VI) to Se(IV) by addition of hydrochloric acid and heating the mixture in a boiling water bath. Se(VI) concentration was determined from the difference between the amounts of total selenium and Se(IV). Under the optimised experimental conditions, an enhancement factor of 196 and a detection limit (based on 3Sb/m) of 0.003 µg L?1 was obtained for aqueous samples. The relative standard deviation at 0.1 µg L?1 concentration level of Se(IV) (n = 6) was found to be 5.2 and 7.7% for intra- and inter-day analysis, respectively. The method was successfully applied to the determination of inorganic selenium species in water and total selenium in food samples.  相似文献   

17.
A selective extraction–spectrophotometric method has been developed for determination of selenium(IV) using O-methoxyphenyl thiourea (OMePT) as a chelating agent. The basis of the proposed method is the spectrophotometric determination of selenium(IV)–OMePT complex obtained after extraction of selenium(IV) from 3.5 M hydrochloric acid media using OMePT in chloroform solvent. The complex shows maximum absorbance at 350 nm against the reagent blank. The Beer’s law was obeyed over the concentration range 5–60 µg mL?1 of selenium(IV). The optimum concentration range was 20–50 µg mL?1 as evaluated from Ringbom’s plot. The molar absorptivity and Sandell’s sensitivity of the selenium(IV)–OMePT complex in chloroform were 3.312 × 102 L mol?1cm?1 and 0.2384 µg cm?2, respectively. The composition of selenium(IV)–OMePT complex was 1:2 established from slope ratio method, mole ratio method and Job’s continuous variation method. The complex was stable for more than 72 h. The interfering effect of various foreign ions was studied and suitable masking agents were used wherever necessary to enhance the selectivity of the developed method. The proposed method was successfully applied for the determination of selenium(IV) from real samples, viz. pharmaceutical formulations, shampoo, vegetable sample, synthetic mixtures and environmental samples. Repetition of the method was checked by finding the relative standard deviation (RSD) for 10 determinations which was 0.35%.  相似文献   

18.
Arsenic (As) in soils and hair collected from schools in Ron Phibun district, Nakhon Si Thammarat province, Thailand, where former tin mining operation were located, was determined by hydride generation atomic absorption spectrophotometry. The relationship between As content in soils and hair with distance from secured landfill was also investigated. Soil and hair samples were collected from 6 schools in summer (February) and rainy season (July). For soils, silt+clay (<45 µm) fraction and sand (45 µm–2 mm) fraction were analyzed. The average concentrations of arsenic in soils during summer (21.70 ± 16.79 mg/kg) and rainy season (22.45 ± 14.17 mg/kg) were at the same concentration level. The average arsenic content in hair samples was 2.24 ± 0.05 mg/kg in rainy season which was higher than 1.05 ± 0.04 mg/kg in summer. It was found that arsenic contents in hair and soils are correlated with the distance from the secured landfill. Most importantly, a positive relationship between arsenic content in hair and soil was obtained for rainy season, which indicated that arsenic in soil corresponded to arsenic in hair. The cancer risk from soils ranged from 4.48 × 10?7 to 2.06 × 10?6 indicating low carcinogenic risk to school children.  相似文献   

19.
We have developed a method for the determination of trace levels of total selenium in water samples. It integrates preconcentration, in-situ photoreduction and slurry photochemical vapor generation using TiO2 nanoparticles, and the determination of total selenium by AFS. The Se(IV) and Se(VI) species were adsorbed on a slurry of TiO2 nanoparticles which then were exposed to UV irradiation in the presence of formic acid to form volatile selenium species. The detection limits were improved 17-fold compared to hydride generation and 56-fold compared to photochemical vapor generation, both without any preconcentration. No significant difference was found in the limits of detection (LODs) for Se(IV) and Se(VI). The LOD is as low as 0.8 ng L?1, the precision is better than 4.5 % (at a level of 0.1 μg L?1 of selenium). The method gave good recoveries when applied to the determination of total selenium in a certified tissue reference material (DORM-3) and in spiked drinking water and wastewater samples containing high concentrations of transition and noble metal ions. It also excels by very low LODs, a significant enhancement of sample throughput, reduced reagent consumption and sample loss, and minimal interference by transition and noble metal ions.
Figure
A method integrating pre-concentration, in situ photo-reduction and slurry photochemical vapor generation by using TiO2 nanoparticles was developed for sensitive determination of total selenium in various water samples by atomic fluorescence spectrometry.  相似文献   

20.
A simple, quantitative method for collecting arsenic and antimony from the digests of geological materials and from salt and fresh waters is described. The procedure involves the addition of selenium(IV) to an acidified sample followed by precipitation of selenium by tin(II) chloride. The precipitate is collected, dried, and irradiated. Arsenic and antimony are quantified directly from the activities of 76As and 122Sb, respectively. The method has detection limits of 9 ng As and 12 ng Sb per gram of rock or 500 g of water, and has been applied to eight new reference standards from the U.S. Geological Survey. Gold is quantitatively collected by the same procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号