首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a method for synthesizing zinc citrate spheres at a low temperature (90 °C) under normal atmospheric pressure. The spherical structures were amorphous and had an average diameter of ~1.7 μm. The amorphous zinc citrate spheres could be converted into crystalline ZnO nanostructures in aqueous solutions by heating at 90 °C for 1 h. By local dissolution of the zinc citrate spheres, nucleation and growth of ZnO occurred on the surfaces of the amorphous zinc citrate spheres. The morphologies and exposed crystal faces of the crystalline ZnO nanostructures (structure I: oblate spheroid; structure II: prolate spheroid; structure III: hexagonal disk; structure IV: sphere) could be controlled simply by varying the solution composition (solutions I, II, III, or IV) in which the as-prepared amorphous zinc citrate spheres were converted. The concentration of citrate anions and solution pH played a decisive role in determining the morphologies and exposed crystal faces of the crystalline ZnO nanostructures. On the basis of experimental results, we propose a plausible mechanism for the conversion of amorphous zinc citrate spheres into the variety of observed ZnO structures.  相似文献   

2.
In this study, we report a simple solution‐phase method to prepare ZnO nanostructures with controllable morphologies. By using oleylamine (OAm) and dodecanol (DDL) as solvents, zinc oxide nanocrystals with tunable sizes and diverse shapes (hexagonal pyramids, bulletlike, and pencil‐like shapes) have been obtained under mild conditions. At the same time, the introduction of presynthesized gold nanocrystals can also lead to the hybrid nanostructures of gold–zinc oxide hexagonal nanopyramids. In addition, the possible formation mechanism of the as‐prepared ZnO nanostructures has been investigated. Notably, the unique optical properties of the ZnO nanostructures with different sizes and shapes have also been discussed. We hope that this strategy will be a general and effective method for fabricating other metal oxide nanocrystals.  相似文献   

3.
控制实验合成条件,利用溶胶-凝胶法和化学溶液生长法制备出不同形貌的ZnO纳米结构。采用X射线衍射仪(XRD)、扫描电子显微镜( SEM) 以及透射电子显微镜(TEM)等多种测试手段对ZnO纳米结构的微观形态及晶相进行了分析。结果表明:3种ZnO纳米结构形貌虽不同,但均具有Z nO六方纤锌矿晶相结构。ZnO纳米棒和花状ZnO纳米结构为单晶,生长方向均沿(0001)方向。ZnO纳米球则为多晶。  相似文献   

4.
ZnO nanostructures of different morphologies were grown in a controlled manner using a simple low-temperature hydrothermal technique. Controlling the content of ethylenediamine (soft surfactant) and the pH of the reaction mixture, nanoparticles, nanorods, and flowerlike ZnO structures could be synthesized at temperatures 80-100 degrees C with excellent reproducibility. High-resolution electron microscopy revealed the well crystalline nature of all the nanostructures with preferential growth along the [002] direction for linear structures. Photoluminescence spectra of the as-grown nanostructures revealed oxygen-vacancy-related defects in them, which could be reduced by air annealing at 250 degrees C. Possible mechanisms for the variation of morphology with synthesis parameters are discussed.  相似文献   

5.
Various morphologies of ZnO nanostructures, such as nanoparticles, nanorods and nanoflowers have been achieved controllably by polymeric sol–gel method. In this approach, zinc nitrate Zn(NO3)2·6H2O, citric acid and ethylene glycol were used as the source of Zn2+, the chelating agent and the solvent agent, respectively. The microstructure of the ZnO nanostructures was characterized by X-ray diffractometry, scanning electron microscopy with the energy dispersive X-ray spectroscopy, transmission electron microscopy, thermogravimetric analysis and Fourier transform infrared spectroscopy. The effect of ethylene glycol to citric acid mole ratio on the morphology and structure of the products was discussed. The ZnO nanoparticles with diameter between 24 ± 2 nm was obtained with EG:CA mole ratio equal to 2:1. The optical properties of as-obtained power were investigated by ultraviolet–visible spectroscopy.  相似文献   

6.
ZnO nanostructures were synthesised in a hydrothermal reaction of zinc acetate in the presence of molybdophosphoric acid (H3[PMo12O40]) as well as its vanadium-substituted acid (H4[PMo11VO40]) at various times, temperatures, and concentrations. The ZnO nanostructures were characterised by X-ray diffraction, transmission electron microscopy, and Fourier transform infrared spectroscopy. The results demonstrated that the synthesised products are crystalline with a zincite hexagonal phase. Various ZnO nanostructures, such as nanoparticles, microrods, and nanosheets, were produced by changing the experimental conditions. The photocatalytic degradation of methyl orange was also investigated using the ZnO nanoparticles thus prepared. These particles exhibited high performance in the photocatalytic degradation of MO and almost 100 % decolourisation occurred within only 20 min.  相似文献   

7.
Various diversified morphology-modulated ZnO nanostructures including nanorods, nanotetrahedrons, nanofans, nanodumbbells, and nanosquamas have been successfully prepared via an effective aminolytic reaction of zinc carboxylates with oleylamine in noncoordinating and coordinating solvents. Their shape- and structural defect-dependent optical properties have been investigated as well. Highly crystalline defect-free nanotetrahedrons/nanorods have a sharp band-edge emission, and highly defective nanodumbbells/nanosquamas show a very broad deep-trap emission, resulting from the radiative recombination of electrons with holes in singly ionized oxygen vacancies.  相似文献   

8.
《Solid State Sciences》2012,14(8):1191-1195
Different morphologies of ZnO nanostructures have been synthesized by a simple reflux method, in imidazolium-based ionic liquids and water as a solvent. The effects of ionic liquid as a template with different concentrations and the amount of sodium hydroxide on the morphology and size of nanostructures were investigated. The structural and optical properties of these ZnO particles were studied by using XRD, SEM and UV–Visible. The characteristic results revealed that using different ionic liquids in water not only prevent a drastic increase in the crystallite size of the zinc oxide species but also provide suitable conditions for the oriented growth of primary nanoparticles with nano sheet and nano hallow block. The results show that the longer alkyl chain at position-1 of imidazole ring or using dicationic ionic liquid with a definite concentration cause the more width of nano sheet. A possible mechanism was proposed to explain the formation of ZnO nanostructures with different morphology.  相似文献   

9.
Block copolymers have been extensively studied over the last few decades because they can self‐assemble into well‐ordered nanoscale structures. The morphologies of block copolymers in confined geometries, however, are still not fully understood. In this work, the fabrication and morphologies of three‐dimensional polystyrene‐block‐polydimethylsiloxane (PS‐b‐PDMS) nanostructures confined in the nanopores of anodic aluminum oxide (AAO) templates are studied. It is discovered that the block copolymers can wet the nanopores using a novel solvent‐annealing‐induced nanowetting in templates (SAINT) method. The unique advantage of this method is that the problem of thermal degradation can be avoided. In addition, the morphologies of PS‐b‐PDMS nanostructures can be controlled by changing the wetting conditions. Different solvents are used as the annealing solvent, including toluene, hexane, and a co‐solvent of toluene and hexane. When the block copolymer wets the nanopores in toluene vapors, a perpendicular morphology is observed. When the block copolymer wets the nanopores in co‐solvent vapors (toluene/hexane = 3:2), unusual circular and helical morphologies are obtained. These three‐dimensional nanostructures can serve as naontemplates for refilling with other functional materials, such as Au, Ag, ZnO, and TiO2.

  相似文献   


10.
A novel seed-assisted chemical reaction at 95 degrees C has been employed to synthesize uniform, straight, thin, and single-crystalline ZnO nanorods on a hectogram scale. The molar ratio of ZnO seed and zinc source plays a critical role in the preparation of thin ZnO nanorods. At a low molar ratio of ZnO seed and zinc source, javelin-like ZnO nanorods consisting of thin ZnO nanorods with a diameter of 100 nm and thick ZnO nanorods with a diameter of 200 nm have been obtained. In contrast, straight ZnO nanorods with a diameter of about 20 nm have been prepared. Dispersants such as poly(vinyl alcohol) act spatial obstructors to control the length of ZnO nanorods. The morphology, structure, and optical property of the ZnO nanostructures prepared under different conditions have been characterized by transmission electron microscopy, field emission scanning electron microscopy, X-ray powder diffraction, high-resolution transmission electron microscopy, and cathodoluminescence. The formation mechanisms for the synthesized nanostructures with different morphologies have been phenomenologically presented.  相似文献   

11.
Lamellae (symmetric) forming polystyrene‐b‐poly(4‐vinylpyridine) (PS‐b‐P4VP) block copolymers (BCPs) were used to produce nanostructured thin films by solvent (toluene) casting (spin‐coating) onto silicon substrates. As expected, strong micellization of PS‐P4VP in toluene results in poorly ordered hexagonally structures films. Following deposition the films were solvent annealed in various solvents and mixtures thereof. A range of both morphologies including micelle and microphase separated structures were observed. It was found that nanostructures typical of films of regular thickness (across the substrate) and demonstrating microphase separation occurred only for relatively few solvents and mixtures. The data demonstrate that simple models of solvent annealing based on swelling of the polymer promoting higher polymer chain mobility are not appropriate and more careful rationalization is required to understand these data. Analysis suggests that regular phase separated films can only be achieved when the copolymer Hildebrand solubility parameter is very similar to the value of the solvent. It is suggested that the solvent anneal method used is best considered as a liquid phase technique rather than a vapor phase method. The results show that solvent annealing methods can be a very powerful means to control structure and in some circumstances dominate other factors such as surface chemistry and surface energies. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
海藻酸锌纤维热降解法制备氧化锌纳米结构   总被引:1,自引:0,他引:1  
采用天然高分子海藻酸钠为原料, 以氯化锌水溶液为凝固浴, 通过湿法纺丝技术成功制备了海藻酸锌(Alg-Zn)纤维.通过在空气中不同温度下对所得海藻酸锌纤维进行热处理, 得到了多种ZnO纳米结构. 利用热失重分析(TG)、X射线衍射(XRD)、电子能量损失谱(EELS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和高分辨透射电子显微镜(HRTEM)等手段对产物的组成、形貌和微观结构进行了详细表征. 结果表明, 焙烧温度和时间对所得ZnO纳米结构的尺寸和形貌具有重要影响; 800 ℃下热处理24 h以上可以得到直径约为120 nm的ZnO纳米棒. 通过仔细考察不同热处理时间得到的ZnO纳米结构, 提出了在焙烧条件下ZnO纳米棒的生长机理.  相似文献   

13.
以醋酸锌和氢氧化钠为原料, 以水和含不同长度烷基链的咪唑类氯盐离子液体的混合物作为反应介质, 采用水热法合成出不同形貌的微/纳米ZnO晶体, 用扫描电子显微镜(SEM)和X射线衍射仪(XRD)对合成的ZnO晶体进行表征. 研究了烷基链长度、 离子液体用量、 反应时间以及反应温度对形成棒状ZnO晶体形貌的影响. 实验结果表明, 所制备的棒状ZnO晶体样品均为六方晶系结构. 在棒状ZnO晶体的制备过程中, 控制反应温度, 选择不同的离子液体及其用量十分重要.  相似文献   

14.
《中国化学快报》2020,31(8):2091-2094
Organic amines are important solvent and raw material in laboratory and industry, as well as releasing from cigarette smoke. It is significant to detect low-concentration amines for environment and public health. Here we reported that as-synthesized zinc oxide is an effective electrode material of electrochemical sensor for the detection of amines. The characterization results reveal that the ZnO morphologies experienced a change from hexagonal bowl-like microparticles, cones, prisms to nanoparticles by adjusting the reaction time, temperature, solvents and additives. Interestingly, ZnO material possessing hexagonal shapes and different sizes exhibits distinct electrochemical response in various amines solution, suggesting that there is a better dependent relationship between different morphological ZnO and amines detection. Particularly, regular hexagonal ZnO nanotablets exhibit a detectable electrochemical response and selectivity to ammonia, implying it can be serve as electrode material for highly effective detection of organic amines.  相似文献   

15.
We report the synthesis, characterization, and solvent‐induced structure formation in thin films of an amphiphilic rod‐coil conjugated block copolymer, poly(3‐hexylthiophene)‐b‐poly(ethylene oxide). The diblock copolymers were prepared by a facile click reaction and their characterizations as well as thermal, crystalline, optical properties, and self‐assembly behavior have been investigated in detail. A series of morphologies including two‐phase separated nanostructure, nanofibrils, and their mixed morphology could be obtained depending on the selectivity of solvents to different blocks. Structural analyses demonstrate there is a subtle balance between microphase separation of copolymer and the π‐π stacking of the conjugated P3HT and such balance can be controlled by changing the solvents of different selectivity in solution and the length of P3HT block. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
We controlled the morphologies of zinc oxide (ZnO) nanostructures on single-walled carbon nanotube electrodes by an electrochemical deposition method and investigated the dependence of the electrocatalytic characteristics toward hydrazine on the different morphologies. ZnO nanorods provided high electrocatalytic activity with unique electrochemical behaviours, associated with the H(+) ion generated by the electro-oxidation of hydrazine.  相似文献   

17.
以硝酸锌[Zn(NO3)2.6H2O]和尿素[CO(NH2)2]作前驱体,通过微波诱导燃烧技术可控合成具有不同形貌的ZnO纳米晶体,并用热重分析和差热分析进行了研究。对各种生长条件:微波功率,辐射时间和尿素/Zn2+物质的量的比对ZnO纳米晶体形貌的影响作了分析。结果表明:尿素/Zn2+物质的量的比对ZnO纳米材料的形貌具有显著影响。X衍射图表明合成的ZnO纳米结构呈六角形。傅里叶变换红外光谱图中400~500 cm-1处明显的峰为Zn-O的振动峰。ZnO纳米结构的发光光谱在366 nm的带边发射,因缺陷又由许多可见光发射峰组成。用扫描电子显微镜、透射电子显微镜、选区电子衍射研究了花状ZnO纳米结构的增长机理。本方法仅需几分钟就获得的了ZnO纳米结构。  相似文献   

18.
Zinc oxide (ZnO) nanostructures have been widely used in biosensor applications. However, little attention has been given to the interaction of ZnO structures with physiological buffer solutions. In the present work, it is shown that the use of buffers containing phosphate ions leads to the modification of the ZnO tetrapodal micro/nanostructures when immersed in such solutions for several hours, even at the physiological pH (7.4). ZnO samples designed to be used as transducers in biosensors were immersed in phosphate buffers for several durations at pH = 5.8 and pH = 7.4. Their detailed morphological, structural and optical characterization was carried out to demonstrate the effect of the ZnO interaction with the phosphate ions. The pH had an important role in the ZnO conversion into zinc phosphate, with lower pH promoting a more pronounced effect. After 72 h and at pH = 5.8, a significant amount of the ZnO structures were converted into crystalline zinc phosphate, while immersion during the same time at pH = 7.4 resulted predominantly in amorphous zinc phosphate particles mixed with the original ZnO tetrapods. Photoluminescence spectra show remarkable changes with prolonged immersion times, particularly when the luminescence of the sample was investigated at 14 K. These findings highlight the importance of a careful analysis of the sensing results when phosphate-based buffer solutions are in contact with the ZnO transducers, as the changes observed on the transduction signal during sensing experiments may also comprise a non-negligible contribution from a phosphate-induced transformation of ZnO, which can hamper an accurate assessment of the sensing behavior.  相似文献   

19.
Multi‐component polymer nanomaterials have attracted great attention because of their applications in areas such as biomedicine, tissue engineering, and organic solar cells. The precise control over the morphologies of multi‐component polymer nanomaterials, however, is still a great challenge. In this work, the fabrication of poly(methyl methacrylate)(PMMA)/poly­styrene (PS) nanostructures that contain PMMA shells and encapsulated PS nanospheres is studied. The nanostructures are prepared using a triple solution wetting method with anodic aluminum oxide (AAO) templates. The nanopores of the templates are wetted sequentially by PS solutions in dimethylformamide (DMF), PMMA solutions in acetic acid, and water. The compositions and morphologies of the nanostructures are controlled by the interactions between the polymers, solvents, and AAO walls. This work not only presents a feasible method to prepare multi‐component polymer nanomaterials, but also leads to a better understanding of polymer‐solvent interactions in confined geometries.

  相似文献   


20.
Different zinc oxide nanostructured morphologies were grown on photolithographically patterned silicon/silicon dioxide substrates by dielectrophoresis technique using different solvents, such as water and ethanol, obtaining rod-like and net-like nanostructures, respectively. The formation of continuous nanostructures was confirmed by scanning electron microscopic, atomic force microscopic images, and electrical characterizations. The rod-like zinc oxide nanostructures were observed in the 10 μm gap between the fingers in the pattern, whereas net-like nanostructures were formed independently of microgap. A qualitative study about the mechanism for the assembly of zinc oxide continuous nanostructures was presented. Devices were electrically characterized, at room temperature, in controlled environment to measure the conductance behavior in ultraviolet and humidity environment. Devices based on zinc oxide nanostructures grown in ethanol medium show better responses under both ultraviolet and humidity, because of the net-like structure with high surface-to-volume ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号