首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
以稀土氯化物、间氨基苯甲酸和8-羟基喹啉为原料, 无水乙醇为溶剂, 首次制备了8种稀土-间氨基苯甲酸-8-羟基喹啉固体配合物. 经元素分析、紫外光谱、红外光谱、热重-差热分析和摩尔电导测定,确定了配合物的组成、性质和成键特征, 其组成为RE(MABA)(hq)2(RE=La3+, Ce3+, Pr3+, Nd3+, Sm3+, Eu3+, Er3+, Y3+; hq=C9H6NO-;MABA-=C6H5NH2COO-). 热分析表明, 配合物的热稳定性优于配体. 试验了该系列配合物的抑菌活性, 结果发现稀土三元配合物的抑菌效果比单独的稀土氯化物、间氨基苯甲酸、 8-羟基喹啉的抑菌效果好.  相似文献   

2.
合成了配合物La(C4H6O2)2(hq)(C4H6O2=甲基丙烯酸,hq=8-羟基喹啉),通过元素分析、摩尔电导、红外光谱、紫外光谱和热重分析手段对产物进行表征。此外,采用紫外吸收光谱、荧光光谱,研究了配合物与鲱鱼精DNA之间的相互作用。结果显示配合物与鲱鱼精DNA作用的结合常数K=7.59×103L·mol-1,配合物与DNA的作用摩尔比为1∶1,作用模式为嵌插作用。  相似文献   

3.
以稀土金属(Ⅲ)氯化物和芦丁为原料,在乙醇溶液中(pH=7~8)合成了六种稀土芦丁配合物,通过元素分析、IR、UV、热重-差热分析、摩尔电导率的测定对配合物进行了表征,确定了配合物的组成,分析了配合物的热稳定性和热分解行为。同时初步研究了配合物在室温下的荧光性质,结果显示配合物Na5SmLCl7.6H2O(L=C27H29O16)表现出相应的Sm(Ⅲ)离子的特征发射。并研究了配合物的抑菌活性,抑菌活性试验表明六种配合物具有选择性抑菌性能。  相似文献   

4.
以1-甲基-2-咪唑醛和甘氨酸缩合的Schiff碱为配体,合成了4种新的过渡金属配合物[M(C7N3H8O2)(H2O)n]Cl O4(M=Co,Ni,Cu,Zn).经元素分析、摩尔电导率测定、红外光谱、电子光谱和热重分析确证配合物的组成和结构.初步抑菌活性实验表明,合成的配合物对多种菌株有明显的抑菌活性.  相似文献   

5.
合成了三个新型开链冠醚席夫碱-稀土离子三元配合物RE(H2L)(Mq)(NO3)3,其中RE=Nd3 、Er3 、Yb3 ,配体H2L=N,N′-双(邻羟苯亚甲基)-3,6-二氧杂-1,8-二氨基辛烷,Mq为8-羟基喹哪啶。采用元素分析、IR、UV-Vis、热重-差热分析(TG-DTG)等手段对配合物的组成结构进行了表征。抑菌活性实验表明,三种配合物对大肠杆菌有很好的抑菌效果,对金黄色葡萄球菌的抑菌效果较弱。  相似文献   

6.
以1-甲基-2-咪唑醛和乙醇胺缩合的Schiff碱为配体,合成了四种新的过渡金属配合物[M(C7N3H11O)2](ClO4)2(M=Co,Ni,Cu,Zn),并通过元素分析、摩尔电导率的测定、红外光谱和电子光谱确证其组成和结构。初步抑菌实验表明,四种配合物均对多种菌株有明显的抑菌活性。  相似文献   

7.
合成了二丁基二硫代氨基甲酸砷[(C9H18NS2)3As(Ⅲ)](1)和二甲基二硫代氨基甲酸铋[(C3H6NS2)3Bi(Ⅲ)](2)两种配合物。通过元素分析、红外光谱、1H NMR、热重对其进行表征,并用X-射线单晶衍射测定了晶体结构。配合物1属于三斜晶系,P 1-空间群,晶胞参数为:a=1.075 0(15)nm,b=1.2143(16)nm,c=1.621(3)nm,α=69.15(2)°,β=75.36(3)°,γ=88.17(2)°,Z=2,V=1.910(5)nm3,Dc=1.197 g.cm-3;配合物2也属于三斜晶系,P 1-空间群,晶胞参数为:a=0.992 9(3)nm,b=0.993 0(3)nm,c=1.142 7(3)nm,α=64.495(4)°,β=80.400(4)°,γ=64.772(4)°,Z=2,V=0.914 7(4)nm3,Dc=2.068 g.cm-3。配合物1中的As(Ⅲ)与来自3个配体中的6个硫原子配位,形成6配位畸变八面体构型;配合物2则形成6配位畸变五角锥构型,其分子之间又通过Bi···S弱相互作用构成二聚体结构。利用琼脂扩散法测试了配合物的抑菌活性,结果表明配合物1对5种受试菌株具有较强的抑菌活性,配合物2则仅有弱的抑菌性。  相似文献   

8.
小檗碱与稀土硝酸盐二元配合物的合成、表征及抑菌作用   总被引:1,自引:0,他引:1  
合成具有抑菌活性的稀土配合物,筛选具有抑菌活性的中药成分做有机配体合成稀土配合物.在乙醇溶液中合成了八种小檗碱与稀土硝酸盐的二元配合物,采用元素分析、红外光谱、差热-热重和X射线衍射等方法进行表征,确定配合物的化学组成为RE(NO3)3(B)3(RE=La3+,Sm3+,Nd3+,Dy3+,Pr3+,Y3+,Ce3+,Gd3+;B=C20H18NO4).研究了稀土配合物的抑菌活性,结果表明稀土配合物的抑菌效果较单独的稀土硝酸盐和小檗碱好.  相似文献   

9.
陈芳  胡珍珠 《合成化学》2006,14(5):480-483
在甲醇中合成了3种稀土-组氨酸-苯骈咪唑配合物Re(H is)m(B IM)(C lO4)3.nH2O(Re=La,m=3,n=6;Re=Nd,Y,m=2,n=8),其结构经UV,IR,TG-DTA,摩尔电导,化学分析和元素分析表征。生物活性实验表明:配合物对大肠杆菌、金黄色葡萄球菌和霉菌均有不同程度的抑菌作用,且菌液浓度越低,配合物的抑菌效果越好。  相似文献   

10.
2-(苯亚胺基次甲基)吲哚铕胺基配合物[η1∶η1-2-(C6H5NH=CH)C8H5N]2Eu[N(Si Me3)2](1)与二芳基取代甲脒(2,6-R2C6H3N=CHNH(C6H3R2-2,6)(R=iPr(2),Me(3))经过配体交换反应,分别得到了含吲哚基脒基铕配合物[η1∶η1-2-(C6H5NH=CH)C8H5N]Eu[(η3-2,6-iPr2C6H3)N=CHN(C6H3iPr2-2,6)][N(Si Me3)2](4)和含脒基的稀土铕配合物[(η3-2,6-Me2C6H3)N=CHN(C6H3Me2-2,6)]2Eu[N(Si Me3)2](5)。结果表明,脒基的位阻显著影响了吲哚基稀土金属胺基配合物与二芳基取代甲脒的配体交换反应。配合物4和5通过IR、元素分析和X射线单晶衍射分析进行了表征。  相似文献   

11.
RE(C7H5O3)2(C9H6NO)配合物抗真菌作用的热动力学研究   总被引:6,自引:0,他引:6  
应用微量热法研究了配合物RE(CTH5O3)2(C9H6NO)(RE代表La,Sm和Nd)对真菌的抗菌作用。在TAM Air热导式等温微量量热仪上,分别测定了桔青霉菌和黑曲霉菌在不同浓度不同稀土配合物及空白条件下生长代谢热谱曲线,并计算得到了真菌在不同条件下的生长代谢速率常数k和传代时间G等热动力学参数。实验表明:3种稀土水杨酸8-羟基喹啉三元配合物对桔青霉菌和黑曲霉菌均有抑制作用,其抑制效果依次为:Sm(Hsal)2(hq)〉La(Hsal)2(hq)〉Nd(Hsal)2(hq)。  相似文献   

12.
希土水杨酸与8─羟基喹啉三元配合物研究   总被引:14,自引:0,他引:14  
合成了六种希土(RE)-水杨酸-8-羟基喹啉三元固体配合物,其通式为RE(Hsal)2,hq(RE=Y,La,Nd,Sm,Ho,Er)。通过元素分析、摩尔电导、IR、Far-IR、UV-Vis、TG-DTA分析,研究了配合物的组成、性质和成键特性。通过抑菌试验表明配合物对于霉菌具有抑真菌能力。  相似文献   

13.
Reactions between triphenyl bismuth, salicylic acid, and niobium or tantalum ethoxide have been explored. Four new coordination complexes incorporating bismuth and the group 5 metals niobium or tantalum have been synthesized and characterized spectroscopically, by elemental analysis, and by single crystal X-ray diffraction. The new complexes are Bi(2)M(2)(mu-O)(sal)(4)(Hsal)(4)(OEt)(2) (1a, M = Nb; 1b, M = Ta) and BiM(4)(mu-O)(4)(sal)(4)(Hsal)(3)(O(i)Pr)(4) (sal = O(2)CC(6)H(4)-2-O, Hsal = O(2)CC(6)H(4)-2-OH) (2a, M = Nb; 2b, M = Ta). Complexes 1a and 1b are isomorphous, as are 2a and 2b. The thermal and hydrolytic decomposition of 1a has been explored by DT/TGA and powder X-ray diffraction, while scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) were used to characterize the morphology and composition of the oxides. The heterobimetallic molecules are completely converted to the amorphous bimetallic oxide by heating to 500 degrees C in air. Decomposition of 1a or 1b at 650 degrees C produces the metastable high temperature form of BiNbO(4) as the major crystalline oxide phase. Heating samples of 1a to 850 degrees C favors conversion of the materials to the low temperature phase as well as disproportionation into Bi(5)Nb(3)O(15) and Nb(2)O(5). Thermal decomposition of 1a and 1b produces porous oxides, while hydrolytic decomposition of the complexes has been shown to produce nanometer scale bimetallic oxide particles. The potential of the complexes to act as single-source precursors for ferroelectric materials is considered.  相似文献   

14.
The reactions between triphenylbismuth, salicylic acid, and the metal alkoxides M(OCH(2)CH(3))(5) (M = Nb, Ta) or Ti[OCH(CH(3))(2)](4) have been investigated under different reaction conditions and in different stoichiometries. Six novel heterobimetallic bismuth alkoxy-carboxylate complexes have been synthesized in good yield as crystalline solids. These include Bi(2)M(2)(sal)(4)(Hsal)(4)(OR)(4) (M = Nb, Ta; R = CH(2)CH(3), CH(CH(3))(2)), Bi(2)Ti(3)(sal)(8)(Hsal)(2), and Bi(2)Ti(4)(O(i)Pr)(sal)(10)(Hsal) (sal = O(2)CC(6)H(4)-2-O; Hsal = O(2)CC(6)H(4)-2-OH). The complexes have been characterized spectroscopically and by single-crystal X-ray diffraction. Compounds of the group V transition metals contain metal ratios appropriate for precursors of ferroelectric materials. The molecules exhibit excellent solubility in common organic solvents and good stability against unwanted hydrolysis. The nature of the thermal decomposition of the complexes has been explored by thermogravimetric analysis and powder X-ray diffraction. We have shown that the complexes are converted to the corresponding oxide by heating in an oxygen atmosphere at 500 degrees C. The mass loss of the complexes, as indicated by thermogravimetric analysis, and the resulting unit cell parameters of the oxides are consistent with the formation of the desired heterobimetallic oxide. The complexes decomposed to form the bismuth-rich phases Bi(4)Ti(3)O(12) and Bi(5)Nb(3)O(15) as well as the expected oxides BiMO(4) (M = Nb, Ta) and Bi(2)Ti(4)O(11).  相似文献   

15.
A series of rare earth metal amido complexes bearing methylene-linked pyrrolyl-amido ligands were prepared through silylamine elimination reactions and displayed high catalytic activities in hydrophosphonylations of aldehydes and unactivated ketones under solvent-free conditions for liquid substrates. Treatment of [(Me(3)Si)(2)N](3)Ln(μ-Cl)Li(THF)(3) with 2-(2,6-Me(2)C(6)H(3)NHCH(2))C(4)H(3)NH (1, 1 equiv) in toluene afforded the corresponding trivalent rare earth metal amides of formula {(μ-η(5):η(1)):η(1)-2-[(2,6-Me(2)C(6)H(3))NCH(2)](C(4)H(3)N)LnN(SiMe(3))(2)}(2) [Ln=Y (2), Nd (3), Sm (4), Dy (5), Yb (6)] in moderate to good yields. All compounds were fully characterized by spectroscopic methods and elemental analyses. The yttrium complex was also characterized by (1)H NMR spectroscopic analyses. The structures of complexes 2, 3, 4, and 6 were determined by single-crystal X-ray analyses. Study of the catalytic activities of the complexes showed that these rare earth metal amido complexes were excellent catalysts for hydrophosphonylations of aldehydes and unactivated ketones. The catalyzed reactions between diethyl phosphite and aldehydes in the presence of the rare earth metal amido complexes (0.1 mol%) afforded the products in high yields (up to 99%) at room temperature in short times of 5 to 10 min. Furthermore, the catalytic addition of diethyl phosphite to unactivated ketones also afforded the products in high yields of up to 99% with employment of low loadings (0.1 to 0.5 mol%) of the rare earth metal amido complexes at room temperature in short times of 20 min. The system works well for a wide range of unactivated aliphatic, aromatic or heteroaromatic ketones, especially for substituted benzophenones, giving the corresponding α-hydroxy diaryl phosphonates in moderate to high yields.  相似文献   

16.
Bismuth(III) salicylate, [Bi(Hsal)(3)](n), reacts readily with the trivalent metal beta-diketonate compounds M(acac)(3) (acac = acetylacetonate; M = Al, V, Cr, Fe, Co) to produce trinuclear coordination complexes of the general formula Bi(2)(Hsal)(6).M(acac)(3) (M = Al, V, Cr, Fe, Co) in 60-90% yields. Spectroscopic and single crystal X-ray diffraction experiments indicate that these complexes possess an unusual asymmetric nested structure in both solution and solid state. Upon standing in dichloromethane solution, Bi(2)(Hsal)(6).Co(acac)(3) eliminates Bi(Hsal)(3) to give the 1:1 adduct Bi(Hsal)(3).Co(acac)(3). The 2:1 heterobimetallic molecular compounds undergo facile thermal decomposition on heating in air to 475 degrees C to produce heterometallic oxide materials, which upon annealing for 2 h at 700 degrees C form crystalline oxide materials. The synthetic approach detailed here represents a unique, general approach to the formation of heterobimetallic bismuth-based coordination complexes via the coordination of M(acac)(3) complexes to bismuth(III) salicylate.  相似文献   

17.
Wu Y  Wang S  Zhu X  Yang G  Wei Y  Zhang L  Song HB 《Inorganic chemistry》2008,47(12):5503-5511
A series of four coordinate rare earth metal amides with general formula ((CH2SiMe2)[(2,6- IPr2C6H3)N]2)LnN(SiMe3)2(THF) [(Ln = Yb(2), Y (3), Dy (4), Sm (5), Nd (6)] containing a diamido ligand (CH2SiMe2)[(2,6-iPr2C6H3)N]2(2-) with a CH2SiMe2 link were synthesized in good yields via reaction of [(Me3Si)2N]3Ln(III)(mu-Cl)Li(THF)3 with the corresponding diamine (CH2SiMe2)[(2,6-iPr2C6H3)NH]2 (1). All compounds were fully characterized by spectroscopic methods and elemental analyses. The structures of complexes 2, 3, 4, 5, and 6 were determined by single-crystal X-ray analyses. Investigation of the catalytic properties of the complexes indicated that all complexes exhibited a high catalytic activity on the cyclotrimerization of aromatic isocyanates, which represents the first example of cyclopentadienyl-free rare earth metal complexes exhibiting a high catalytic activity and a high selectivity on cyclotrimerization of aromatic isocyanates. The temperatures, solvents, catalyst loading, and the rare earth metal effects on the catalytic activities of the complexes were examined.  相似文献   

18.
在乙醇体系中,由主配体4-[(1,3-二氧代丁基)氨基]苯甲酸(H2L,C11H11NO4)、稀土硝酸盐及辅助配体邻菲啰啉(phen)反应合成了两个系列8个配合物[Ln2(L)3(H2O)4]n(Ln=Sm(1),Eu(2),Tb(3),Dy(4));[Ln2(NO3)2(L)2(phen)2]n(Ln=Sm(5),Eu(6),Tb(7),Dy(8))。用元素分析、红外光谱、摩尔电导、热重分析进行表征,确定了产物的化学组成,推断了相应的结构。测定了室温时固体产物的激发和发射光谱,结果表明:由主辅配体共同配位的三元配合物的发光强度好于无辅助配体参与的二元配合物。测定了三元配合物的荧光寿命,其中铕和铽配合物显示较长的荧光寿命。  相似文献   

19.
The synthesis, characterization and reactivity of heteroleptic rare earth metal complexes supported by the carbon-bridged bis(phenolate) ligand 2,2'-methylene-bis(6-tert-butyl-4-methyl-phenoxo) (MBMP(2-)) are described. Reaction of (C(5)H(5))(3)Ln(THF) with MBMPH(2) in a 1 : 1.5 molar ratio in THF at 50 degrees C produced the heteroleptic rare earth metal bis(phenolate) complexes (C(5)H(5))Ln(MBMP)(THF)(n) (Ln = La, n = 3 (); Ln = Yb (), Y (), n = 2) in nearly quantitative yields. The residual C(5)H(5)(-) groups in complexes to can be substituted by the bridged bis(phenolate) ligands at elevated temperature to give the neutral rare earth metal bis(phenolate) complexes, and the ionic radii have a profound effect on the structures of the final products. Complex reacted with MBMPH(2) in a 1 : 0.5 molar ratio in toluene at 80 degrees C to produce a dinuclear complex (MBMP)La(THF)(mu-MBMP)(2)La(THF)(2) () in good isolated yield; whereas complexes and reacted with MBMPH(2) under the same conditions to give (MBMP)Ln(MBMPH)(THF)(2) (Ln = Yb (), Y ()) as the final products, in which one hydroxyl group of the phenol is coordinated to the rare earth metal in a neutral fashion. The reactivity of complexes and with some metal alkyls was explored. Reaction of complex with 1 equiv. of AlEt(3) in toluene at room temperature afforded unexpected ligand redistributed products, and a discrete ion pair ytterbium complex [(MBMP)Yb(THF)(2)(DME)][(MBMP)(2)Yb(THF)(2)] () was isolated in moderate yield. Furthermore, reaction of complex with 1 equiv. of ZnEt(2) in toluene gave a ligand redistributed complex [(mu-MBMP)Zn(THF)](2) () in reasonable isolated yield. Similar reaction of complex with ZnEt(2) also afforded complex ; whereas the reaction of complex with 1 equiv. of n-BuLi in THF afforded the heterodimetallic complex [(THF)Yb(MBMP)(2)Li(THF)(2)] (). All of these complexes were well characterized by elemental analyses, IR spectra, and single-crystal structure determination, in the cases of complexes , and -.  相似文献   

20.
A family of rare earth metal bis(amide) complexes bearing monoanionic amidinate [RC(N-2,6-Me(2)C(6)H(3))(2)](-) (R = cyclohexyl (Cy), phenyl (Ph)) as ancillary ligands were synthesized and characterized. One-pot salt metathesis reaction of anhydrous LnCl(3) with one equivalent of amidinate lithium [RC(N-2,6-Me(2)C(6)H(3))(2)]Li, following the introduction of two equivalents of NaN(SiMe(3))(2) in THF at room temperature afforded the neutral and unsolvated mono(amidinate) rare earth metal bis(amide) complexes [RC(N-2,6-Me(2)C(6)H(3))(2)]Y[N(SiMe(3))(2)](2) (R = Cy (1); R = Ph (2)), and the "ate" mono(amidinate) rare earth metal bis(amide) complex [CyC(N-2,6-Me(2)C(6)H(3))(2)]Lu[N(SiMe(3))(2)](2)(μ-Cl)Li(THF)(3) (3) in 61-72% isolated yields. These complexes were characterized by elemental analysis, NMR spectroscopy, FT-IR spectroscopy, and X-ray single crystal diffraction. Single crystal structural determination revealed that the central metal in complexes 1 and 2 adopts a distorted tetrahedral geometry, and in complex 3 forms a distorted trigonal bipyramidal geometry. In the presence of AlMe(3), and in combination with one equimolar amount of [Ph(3)C][B(C(6)F(5))(4)], complexes 1 and 2 showed high activity towards isoprene polymerization to give high molecular weight polyisoprene (M(n) > 10(4)) with good cis-1,4 selectivity (>90%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号