首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
An AIEgen decorated porphyrin (TPETPyP) with 1O2 quantun yield as high as 0.85 in PBS was facilely prepared through a simple one-step reaction for efficient photocleavage of proteins in PDT.  相似文献   

2.
Recently, photodynamic therapy (PDT) has been extensively applied in clinical and coadjuvant treatment of various kinds of tumors. However, the photosensitizer (PS) of PDT still lack of high production of singlet oxygen (1O2), low cytotoxicity and high biocompatibility. Herein, we propose a facile method for establishing a new core-shell structured Sn nanocluster@carbon dots (CDs) PS. Firstly, Sn4+@S-CDs complex is synthesized using the sulfur-doped CDs (S-CDs) and SnCl4 as raw materials, and subsequently the new PS (Sn nanocluster@CDs) is obtained after vaporization of Sn4+@S-CDs solution. Remarkably, the obtained Sn nanocluster@CDs show an enhanced fluorescence as well as a higher 1O2 quantum yield (QY) than S-CDs. The high 1O2 QY (58.3%) irradiated by the LED light (400–700 nm, 40 mW/cm2), induce the reduction of 4T1 cancer cells viability by 25%. More intriguingly, no visible damage happens to healthy cells, with little impact on liver tissue due to renal excretion, both in vitro and in vivo experiments demonstrate that Sn nanocluster@CDs may become a promising PS, owning a high potential for application in PDT.  相似文献   

3.
Photodynamic therapy (PDT) greatly suffers from the weak NIR-absorption, oxygen dependence and poor stability of photosensitizers (PSs). Herein, inspired by natural bacteriochlorin, we develop a bacteriochlorin analogue, tetrafluorophenyl bacteriochlorin (FBC), by one-step reduction of tetrafluorophenyl porphyrin (TFPP). FBC can realize deep tissue penetration, benefitting from the strong NIR absorption. The reactive oxygen species (ROS) generation capacity of FBC can retain around 60% with a 1.0 cm-thick pork skin as the barrier. Besides, FBC could not only produce oxygen-dependent 1O2, but also generate less oxygen-dependent O2˙ and ˙OH to achieve excellent PDT even in hypoxic tumors. Moreover, FBC exhibits an ultra-high stability and it is almost unchanged even under visible light at room temperature for 15 months. Interestingly, the high reactivity of the fluorophenyl group makes it easy for FBC to produce FBC derivatives. A biocompatible FBC nanogel could be directly formed by blending FBC with SH–PEG–SH. The FBC nanogel displays excellent photodynamic efficacy in vitro and in vivo. Thus, FBC would be a promising PS for the clinical PDT of deep tumors.

A hypoxia-tolerant photosensitizer FBC-based nanoplatform with strong NIR absorbance and ultra-high stability was facilely prepared for PDT of deep tumors.  相似文献   

4.
Construction of GdIII photosensitizers is important for designing theranostic agents owing to the unique properties arising from seven unpaired f electrons of the Gd3+ ion. Combining these with the advantages of porpholactones with tunable NIR absorption, we herein report the synthesis of GdIII complexes Gd‐1 – 4 ( 1 , porphyrin; 2 , porpholactone; 3 and 4 , cis‐ and trans‐porphodilactone, respectively) and investigated their function as singlet oxygen (1O2) photosensitizers. These Gd complexes displayed 1O2 quantum yields (ΦΔs) from 0.64–0.99 with the order Gd‐1 < Gd‐2 < Gd‐3 < Gd‐4 . The gradually enhanced 1O2 sensitization after β‐oxazolone moiety replacement was ascribed to the narrowing of the energy gap (ΔE) between the lowest triplet states (T1) of the ligand and the energy level of the 1Δg3Σg transition of 1O2. In particular, Gd‐4 is capable of excitation in the visible to NIR region (400–700 nm) with a quantum yield near unity. These Gd complexes were first demonstrated as efficient photosensitizers in photocatalysis such as oxidative C?H bond functionalization of secondary or tertiary amines, and the oxygenation of the natural product cholesterol. Finally, after glycosylation, these water‐soluble Gd complexes showed potential applications in photodynamic therapy (PDT) in HeLa cells. This work revealed that GdIII complexes of “bioinspired” β‐modified porpholactones are efficient NIR photosensitizers and form a chemical basis to construct appealing photocatalysts and theranostic agents based on lanthanides.  相似文献   

5.
Photodynamic therapy (PDT) is a promising new treatment technique which can potentially destroy unwanted and malignant tissues, such as those of cancer. The photodynamic mechanisms of three tetrapyrrole compounds: Mg‐purpurin‐18, tetra(meso‐chlorophenyl)porphyrin (m‐TCPP) and 2,7,12,18‐tetramethyl‐3,8‐di[(1‐isobutoxyl)‐ ethyl]‐13,17‐bis[3‐di(2‐chloroethyl)aminopropyl]porphyrin (TDBP) in acetonitrile were investigated by 355 nm laser flash photolysis. It was found that after laser flash photolysis (LFP), the excited states of TDBP and Mg‐purpurin‐18 could react with O2 and 1O2 was produced, which proved that TDBP and Mg‐purpurin‐18 took effects through type II mechanism in PDT. This suggested that TDBP and Mg‐purpurin‐18 should be suitable for target tissues containing enough O2. Mg‐purpurin‐18 has two extra absorptions at 550 and 700 nm, which means it has broad choices of laser wavelength in PDT. It was also found that m‐TCPP could be photoionized when excited with 355 nm laser under N2‐saturated condition. It could also react with O2 to produce reactive oxygen species such as superoxide and the peroxide anions, but not 1O2. These were known as the Type I mechanism. So m‐TCPP could be used even at low oxygen concentration or more polar environments with good behavior in PDT. From the above studies on the three different tetrapyrrole compounds it could be concluded that the structure of porphin ring takes a main role in PDT. And there was important impact on the photodynamic mechanism for the functional group directly connecting with porphin ring, while little influence for the functional group indirectly connecting with porphin ring. These will be of great value in the discovery of new PDT drugs.  相似文献   

6.
High resolution absorption and laser induced emission spectra of the lowest B3u(nπ*) singlet state of s-tetrazine-h2 and -d2 in a benzene crystal at 1.8 K are presented and discussed. The absorption spectrum with origin at 17231 cm?1 (h2) is dominated by a progression in ν6a and a Herzberg-Teller origin which has been assigned as ν1. The absence of ν1 in the emission spectrum is explained as being due to a destructive vibronic interference effect. The Franck-Condon envelope of the unique ν6a progression in emission is used for a determination of the excited state structure and the limitations of this procedure are examined. Direct lifetime measurements using a dye laser and single photon counting techniques show the fluorescence lifetime of s-tetrazine-h2 and -d2 to be shorter than 1.5 ns. From a deconvolution of the emission pulse of dimethyl s-tetrazine its fluorescence lifetime in the gas phase is found to be 6.0 ± 0.3 ns. Through a comparison of the fluorescence quantum yield of s-tetrazine-h2 and dimethyl s-tetrazine we calculate for s-tetrazine-h2 a fluorescence lifetime of 1.5 ± 0.2 ns and a fluoresence quantum yield of 1.8 × 10?3. The ratio of the emissive lifetimes of s-tetrazine-d2 and -h2 was measured from relative fluorescence yields and found to be 1.18 ± 0.05. Photodissociation quantum yield studies on s-tetrazine-h2, -d2 and dimethyl for excitation into the origin of the 1B3u(nπ*) state show this yield to be in the range of 1.3 ± 0.3, and this could explain the low fluorescence yields of the s-tetrazines. The fluorescence quantum yields in the gas phase are found to vary among the vibronic levels of the 1B3u state. This finding is in agreement with earlier measurements by Vemulapalli and Cassen, but the report by these authors that such quantum yield variations also occurred in the rovibronic structure is not confirmed.  相似文献   

7.
Fluorescent proteins are increasingly becoming actuators in a range of cell biology techniques. One of those techniques is chromophore‐assisted laser inactivation (CALI), which is employed to specifically inactivate the function of target proteins or organelles by producing photochemical damage. CALI is achieved by the irradiation of dyes that are able to produce reactive oxygen species (ROS). The combination of CALI and the labelling specificity that fluorescent proteins provide is useful to avoid uncontrolled photodamage, although the inactivation mechanisms by ROS are dependent on the fluorescent protein and are not fully understood. Herein, we present a quantitative study of the ability of the red fluorescent protein TagRFP to produce ROS, in particular singlet oxygen (1O2). TagRFP is able to photosensitize 1O2 with an estimated quantum yield of 0.004. This is the first estimation of a quantum yield of 1O2 production value for a GFP‐like protein. We also find that TagRFP has a short triplet lifetime compared to EGFP, which reflects relatively high oxygen accessibility to the chromophore. The insight into the structural and photophysical properties of TagRFP has implications in improving fluorescent proteins for fluorescence microscopy and CALI.  相似文献   

8.
Type I photodynamic therapy (PDT) represents a promising treatment modality for tumors with intrinsic hypoxia. However, type I photosensitizers (PSs), especially ones with near infrared (NIR) absorption, are limited and their efficacy needs improvement via new targeting tactics. We develop a NIR type I PS by engineering acridinium derived donor-π-acceptor systems. The PS exhibits an exclusive type I PDT mechanism due to effective intersystem crossing and disfavored energy transfer to O2, and shows selective binding to G-quadruplexes (G4s) via hydrogen bonds identified by a molecular docking study. Moreover, it enables fluorogenic detection of G4s and efficient O2 production in hypoxic conditions, leading to immunogenic cell death and substantial variations of gene expression in RNA sequencing. Our strategy demonstrates augmented antitumor immunity for effective ablation of immunogenic cold tumor, highlighting its potential of RNA-targeted type I PDT in precision cancer therapy.  相似文献   

9.
The phenomena of the high affinity of porphyrins to the human serum proteins, albumin, high-density lipoproteins (HDL) and low-density lipoproteins (LDL) is well established. Yet, evaluation of the activities of these proteins as endogenous porphyrin carriers, especially with respect to receptor-mediated porphyrin uptake into tumor cells, the merits of which are still in dispute, requires more quantitative protein-porphyrin binding data. As a continuation of previous studies on this issue, the binding of several porphyrin systems to each of the three proteins, employing previously developed spectral methodologies, was studied. The specific systems reported here are hematoporphyrin ester (HPE), which is a novel hematoporphyrin derivative (HPD)-like system, two porphyrin trimers (denoted O1 and O2) and a porphyrin dimer (denoted O3) isolated from HPE. Human serum albumin (HSA) was found to have a single high-affinity site for the monomeric components of HPE, with an equilibrium binding constant of 3.6 × 106. The equilibrium parameters determined for the binding of the three HPE-isolated oligomers to each of the serum proteins are: (1) Binding constants (Kb') of 2.3 × 106, 6.9 × 104 and 1.5 × 104 and number of sites per protein molecule (n) of 3, 1 and 5, for the binding of 01, 02 and 03, respectively, to HSA. (2) Kb’values of 15.5 × 103, 15.3 × 103 and 6.6 × 103 and n values of 1, 2 and 2, for the binding of O1, O2 and O3, respectively, to HDL. (3) Kb’values of 3.3 × 103, 2.28 × 104 and 8.0 × 103 and n values of 50, 20 and 16 for the binding of O1, O2 and O3, respectively, to LDL. These data are direct and clear support not only for the high affinity of porphyrins to serum proteins but specifically of stable oligomers that have been assigned critical roles in the photodynamic treatment of tumors. Of the three proteins, LDL is clearly the best camer, providing the highest drug payload with a moderate affinity (enough to bind and not too much to prevent release). These data are suggested to be promising for the postulated role of LDL in porphyrin uptake into tumor cells and to be useful in the future as benchmarks for novel porphyrin systems.  相似文献   

10.
Three substituted tetraazaporphyrins, octa-(4-tert-butylphenyl)-tetrapyrazinoporphyrazine, tetra-(4-tert-butyl)phthalocyanine and tetra-(4-tert-butyi)phthalocyanatomagnesium (t4-PcMg), were spectroscopically checked in solutions and liposomes with respect to suitability as potential sensitizers of a possible new start mechanism for photodynamic therapy (PDT) from a stepwise excited higher singlet state. This PDT start mechanism was recently proposed to overcome the problem of O2 (1δ2)-caused cutaneous phototoxicity in PDT. By means of absorption and fluorescence measurements as well as nonlinear absorption investigation, transient spectroscopy and lasing experiments, compound t4-PcMg was found to have the most appropriate properties: Based on a high fluorescence quantum yield (φfi= 0.84) and a very low crossing to the triplet (φisc= 0.05), two higher excited states can be effectively populated both by two stepwise absorption transitions at 674 nm and consecutive absorption transitions at 674 and 710 nm. Moreover, t4-PcMg incorporates into liposomes very well with spectroscopic properties similar to those in solution.  相似文献   

11.
Using mitochondria isolated from Sarcoma 180 ascites tumour in Swiss mice as a model system, we have evaluated the ability of a novel porphyrin, meso-tetrakis[4-(carboxymethyleneoxy)phenyl]porphyrin (H2T4CPP), to induce damage on photosensitization. Oxidative damage to mitochondria, one of the primary and crucial targets of the photodynamic effect, is assessed by measuring products of lipid peroxidation such as thiobarbituric acid reactive substances (TBARS) and lipid hydroperoxides (LOOH), besides the loss of activity of the mitochondrial marker enzyme succinate dehydrogenase (SDH). Analysis of product formation, the effect of deuteration and selective inhibition by scavengers of reactive oxygen species (ROS) show that the damage observed is due mainly to singlet oxygen (1O2) and to a minor extent to hydroxyl radicals (OH). The 1O2 generation and triplet lifetime of this porphyrin have also been estimated. Fluorescence spectroscopy, used to ascertain the binding of this porphyrin to the mitochondrial proteins, shows a rapid association within 0–2 h and a decline thereafter. Confocal microscopy reveals intracellular localisation of this porphyrin in cells in vitro. Our overall results suggest that the porphyrin H2T4CPP, due to its ability to bind to mitochondrial protein components and to generate ROS upon photoexcitation, may have potential applications in photodynamic therapy.  相似文献   

12.
White-light-emitting diodes(WLEDs) possess many merits, such as high efficiency and stability. Developing cost-effective, environmentally friendly, high-performance luminophores to achieve high-quality,full-spectrum, white lighting is of great importance to the construction and progress of WLEDs. In this work, solid-state, highly luminescent orange-emitting nanoclusters(MgCl2-Lys-Ag/Au NCs) were prepared via the salt-induced precipitation of Lys-Ag/Au NCs from solution, which showed a...  相似文献   

13.
The efficiency of several porphyrins at 10 μM and 83 μM as sensitizers of the photooxidation of 0.1 mM tryptophan and histidine via a singlet oxygen-mechanism was studied in pH 7.4-buffered aqueous solutions and in aqueous dispersions of Triton X-100 micelles. The porphyrins were either solubilized in the bulk aqueous medium or associated with the micellar phase, whereas the amino acids were always located in the aqueous phase. With those porphyrins, such as uroporphyrin I, meso-tetra (4-sulfonatophenyl)porphine, meso-tetra(4-carboxyphenyl)porphine and meso-tetra)N,N,N-trimethylanilinium)porphine, which are > 98% monomeric in both media, the efficiency of histidine photooxidation was independent of the site of O2(1Δg) generation, as shown by the closely similar values for the photooxidation rate constant and oxygen-consumption quantum yield in the presence and absence of Triton micelles; the same indications were provided by photokinetic experiments with tryptophan. Actually, laser flash photolysis studies showed that the micelle-incorporation of the above mentioned porphyrins brought about only minor changes in their photophysical properties, including the relative yield of O2(1Δg) generation. On the other hand, hematoporphyrin IX, its Zn2+-complex, and coproporphyrin III are largely aggregated in homogeneous aqueous solution; their incorporation into Triton micelles caused an increase of the triplet quantum yield and an enhancement of the oxygen-consumption quantum yield and photooxidation rate constant for both histidine and tryptophan. The lower photosensitizing efficiency of aggregated porphyrin species in comparison with the corresponding monomeric porphyrin was confirmed by measuring the initial rate and quantum yield of oxygen consumption upon irradiation of 1 mM histidine and tryptophan in the presence of different hematoporphyrin concentrations within the 0.3-100μM range.  相似文献   

14.
Two-photon-excited photodynamic therapy (TPE-PDT) has significant advantages over conventional photodynamic therapy (PDT). However, obtaining easily accessible TPE photosensitizers (PSs) with high efficiency remains a challenge. Herein, we demonstrate that emodin (Emo), a natural anthraquinone (NA) derivative, is a promising TPE PS with a large two-photon absorption cross-section (TPAC: 380.9 GM) and high singlet oxygen (1O2) quantum yield (31.9 %). When co-assembled with human serum albumin (HSA), the formed Emo/HSA nanoparticles (E/H NPs) possess a giant TPAC (4.02×107 GM) and desirable 1O2 generation capability, thus showing outstanding TPE-PDT properties against cancer cells. In vivo experiments reveal that E/H NPs exhibit improved retention time in tumors and can ablate tumors at an ultra-low dosage (0.2 mg/kg) under an 800 nm femtosecond pulsed laser irradiation. This work is beneficial for the use of natural extracts NAs for high-efficiency TPE-PDT.  相似文献   

15.
Luminescence and chemical acceptors methods were used to study the photosensitized formation of singlet molecular oxygen (1O2, 1?? g ) by monomer and aggregated forms of copper tetra-4-(morpholine-4-yl)-tetra-5-(2-naphthoxy)phthalocyanine in benzene, benzene-d 6, acetone, DMF, and pyridine. The values of 1O2 quantum yield were determined. The effectiveness of the 1O2 photoproduction was shown to be reduced due mainly to the aggregation of the copper phthalocyanine molecules.  相似文献   

16.
In this account, the reactive oxygen species (ROS) in photodynamic therapy (PDT) were deliberately reviewed. First, the specific definition of ROS and PDT were readily clarified. Afterward, this review focuses on the fundamental principles and applications of PDT. Due to strong oxidation ability of radicals (e.g., •OH and O2•-) and non-radical (e.g., 1O2 and H2O2), these ROS would attack the in vitro and in vivo tumor cells, thus achieving the goal of cancer treatment. Then, ROS in PDT for cancer treatment was thoroughly reviewed, including the mechanism and photosensitizer (PS) selection (i.e., nanomaterials). Ultimately, emphasis was made on the challenges, research gap, and prospects of ROS in cancer treatment and critically discussed. Hopefully, this review can offer detailed theoretical guidance for the researchers who participate in the study regarding ROS in PDT.  相似文献   

17.
Time-resolved thermal-lensing was used to measure the absolute quantum yield (φΔ) of singlet molecular oxygen, O2(1Δg), produced by hematoporphyrin photosensitization in ethanol. Deuteration of the solvent did not affect the value of φΔ. The value of φΔ= 0.53 was then used as reference to evaluate φΔ in O2 (1Δg) phosphorescence experiments with the related porphyrins, monohydroxyethylvinyl deuteroporphyrin and dihematoporphyrin ether. The φΔ values, in conjunction with the respective quantum yields of intersystem crossing (measured using a nanosecond laser flash photolysis technique) served to evaluate efficiencies, SΔ, of O2 (1Δg) production from the porphyrin triplet states. The lifetime TΔ in monodeuterated ethanol was measured as 29 ± 3 μs and 30 ± 1 (xs by time-resolved thermal lensing and phosphorescence detection, respectively. TΔ in ethanol and fully deuterated ethanol were in good agreement with values reported in the literature.  相似文献   

18.
The primary processes in the photolysis of water vapor at 1470 Å are due to H2O + hν(λ = 1470 Å) → H2 + O(1D), H2O + hν(λ = 1470 Å) → H + OH with the H2 yield of the first process accounting for 23% of the overall H2 production. The quantum yield of this process is estimated to be 0.08 by using O2 as a scavenger for H-atoms. Secondary reactions involving the photolytic products and added O2 are discussed.  相似文献   

19.
Fluorescent dyes with multi‐functionality are of great interest for photo‐based cancer theranostics. However, their low singlet oxygen quantum yield impedes their potential applications for photodynamic therapy (PDT). Now, a molecular self‐assembly strategy is presented for a nanodrug with a remarkably enhanced photodynamic effect based on a dye‐chemodrug conjugate. The self‐assembled nanodrug possesses an increased intersystem crossing rate owing to the aggregation of dye, leading to a distinct singlet oxygen quantum yield (Φ(1O2)). Subsequently, upon red light irradiation, the generated singlet oxygen reduces the size of the nanodrug from 90 to 10 nm, which facilitates deep tumor penetration of the nanodrug and release of chemodrug. The nanodrug achieved in situ tumor imaging and potent tumor inhibition by deep chemo‐PDT. Our work verifies a facile and effective self‐assembly strategy to construct nanodrugs with enhanced performance for cancer theranostics.  相似文献   

20.
Abstract The 83 μM hematoporphyrin (HP)-sensitized photooxidation of 0.1 mM tryptophan in aqueous solution buffered at pH 7.4 or in binary mixtures of phosphate buffer and organic solvents of higher (formamide) or lower (N,N-dimethylformamide, methanol, ethanol, tetrahydrofuran) polarity proceeds by a pure singlet oxygen (1O2) mechanism as suggested by azide quenching experiments, the rate-enhancing action of deuterated solvents, and the lack of any significant reaction between triplet HP and tryptophan. Both the first-order rate constant of the photoprocess and the photooxidation quantum yield (φ= 0.011 in phosphate buffer at pH 7.4) increase when the medium polarity is increased (e.g. φ= 0.024 in 90% formamide); this results mainly from the greater quantum yield of 1O2 generation and the longer lifetime of 1O2. The intrinsic reactivity of 1O2 with tryptophan is independent of formamide concentration. A moderate decrease in the medium polarity (e.g. in the range 0-30% methanol) enhances the efficiency of tryptophan photooxidation (φ= 0.014 in 30% methanol) as a result of the enhanced quantum yields of triplet HP and 1O2 formation. In contrast, the overall photooxidation rate is depressed at high concentrations of low-polarity organic solvents (e.g. φ= 0.0039 in 90% methanol) due to a 5.5-fold drop of the rate constant for the 1O2-tryptophan reaction which counteracts the enhancement of the lifetime and quantum yield of triplet HP and 1O2. The solvent composition also affects the equilibria between monomeric and multimeric forms of HP. However, under our experimental conditions, the aggregation state of HP appears to exert only a minor influence on the efficiency of tryptophan photooxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号