首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 119 毫秒
1.
Reactive oxygen species (ROS)-induced apoptosis is a widely practiced strategy for cancer therapy. Although photodynamic therapy (PDT) takes advantage of the spatial–temporal control of ROS generation, the meticulous participation of light, photosensitizer, and oxygen greatly hinders the broad application of PDT as a first-line cancer treatment option. An activatable system has been developed that enables tumor-specific singlet oxygen (1O2) generation for cancer therapy, based on a Fenton-like reaction between linoleic acid hydroperoxide (LAHP) tethered on iron oxide nanoparticles (IO NPs) and the released iron(II) ions from IO NPs under acidic-pH condition. The IO-LAHP NPs are able to induce efficient apoptotic cancer cell death both in vitro and in vivo through tumor-specific 1O2 generation and subsequent ROS mediated mechanism. This study demonstrates the effectiveness of modulating biochemical reactions as a ROS source to exert cancer death.  相似文献   

2.
Development of a photosensitizing system that can reversibly control the generation of singlet oxygen (1O2) is of great interest for photodynamic therapy (PDT). Recently several photosensitizer–photochromic‐switch dyads were reported as a potential means of the 1O2 control in PDT. However, the delivery of such a homogeneous molecular dyad as designed (e.g., optimal molar ratio) is extremely challenging in living systems. Herein we show a Zr‐MOF nanoplatform, demonstrating energy transfer‐based 1O2 controlled PDT. Our strategy allows for tuning the ratios between photosensitizer and the switch molecule, enabling maximum control of 1O2 generation. Meanwhile, the MOF provides proximal placement of the functional entities for efficient intermolecular energy transfer. As a result, the MOF nanoparticle formulation showed enhanced PDT efficacy with superior 1O2 control compared to that of homogeneous molecular analogues.  相似文献   

3.
Owing to their unique, nanoscale related optical properties, nanostructures assembled from molecular photosensitizers (PSs) have interesting applications in phototheranostics. However, most nanostructured PS assemblies are super‐quenched, thus, preventing their use in photodynamic therapy (PDT). Although some of these materials undergo stimuli‐responsive disassembly, which leads to partial recovery of PDT activity, their therapeutic potentials are unsatisfactory owing to a limited ability to promote generation reactive oxygen species (ROS), especially via type I photoreactions (i.e., not by 1O2 generation). Herein we demonstrate that a new, nanostructured phthalocyanine assembly, NanoPcA, has the ability to promote highly efficient ROS generation via the type I mechanism. The results of antibacterial studies demonstrate that NanoPcA has potential PDT applications.  相似文献   

4.
When irradiated, fullerene efficiently generates reactive oxygen species (ROS) and is an attractive photosensitizer for photodynamic therapy (PDT). Ideally, photosensitizers for PDT should be water-soluble and tumor-specific. Because cancer cells endocytose glucose more effectively than normal cells, the characteristics of fullerene as a photosensitizer were improved by combining it with glucose. The cytotoxicity of PDT was studied in several cancer cell lines cultured with C60-(Glc)1 (d -glucose residue pendant fullerene) and C60-(6Glc)1 (a maltohexaose residue pendant fullerene) subsequently irradiated with UVA1. PDT alone induced significant cytotoxicity. In contrast, PDT with the glycoconjugated fullerene exhibited no significant cytotoxicity against normal fibroblasts, indicating that PDT with these compounds targeted cancer cells. To investigate whether the effects of PDT with glycoconjugated fullerene were because of the generation of singlet oxygen (1O2), NaN3 was added to cancer cells during irradiation. NaN3 extensively blocked PDT-induced apoptosis, suggesting that PDT-induced cell death was a result of the generation of 1O2. Finally, to investigate the effect of PDT in vivo, melanoma-bearing mice were injected intratumorally with C60-(Glc)1 and irradiated with UVA1. PDT with C60-(Glc)1 suppressed tumor growth. These findings indicate that PDT with glycoconjugated fullerene exhibits tumor-specific cytotoxicity both in vivo and in vitro via the induction of 1O2.  相似文献   

5.
A method is developed to fabricate tumor microenvironment (TME) stimuli-responsive nanoplatform for fluorescence (FL) imaging and synergistic cancer therapy via assembling photosensitizer (chlorine e6, Ce6) modified carbon dots (CDs-Ce6) and Cu2+. The as-obtained nanoassemblies (named Cu/CC nanoparticles, NPs) exhibit quenched FL and photosensitization due to the aggregation of CDs-Ce6. Their FL imaging and photodynamic therapy (PDT) functions are recovered efficiently once they entering tumor sites by the stimulation of TME. Introducing of Cu2+ not only provides extra chemodynamic therapy (CDT) function through reaction with hydrogen peroxide (H2O2), but also depletes GSH in tumors by a redox reaction, thus amplifying the intracellular oxidative stress and enhancing the efficacy of reactive oxygen species (ROS) based therapy. Cu/CC NPs can act as a FL imaging guided trimodal synergistic cancer treatment agent by photothermal therapy (PTT), PDT, and thermally amplified CDT.  相似文献   

6.
This work reports a newly designed pH-activatable and aniline-substituted aza-boron-dipyrromethene as a trifunctional photosensitizer to achieve highly selective tumor imaging, efficient photodynamic therapy (PDT) and therapeutic self-monitoring through encapsulation in a cRGD-functionalized nanomicelle. The diethylaminophenyl is introduced in to the structure for pH-activatable near-infrared fluorescence and singlet oxygen (1O2) generation, and bromophenyl is imported to increase the 1O2 generation efficiency upon pH activation by virtue of its heavy atom effect. After encapsulation, the nanoprobe can target αvβ3 integrin-rich tumor cells via cRGD and is activated by physiologically acidic pH for cancer discrimination and PDT. The fascinating advantage of the nanoprobe is near-infrared implementation beyond 800 nm, which significantly improves the imaging sensitivity and increases the penetration depth of the PDT. By monitoring the fluorescence decrease in the tumor region after PDT, the therapeutic efficacy is demonstrated in situ and in real time, which provides a valuable and convenient self-feedback function for PDT efficacy tracking. Therefore, this rationally designed and carefully engineered nanoprobe offers a new paradigm for precise tumor theranostics and may provide novel opportunities for future clinical cancer treatment.  相似文献   

7.
Graphitic carbon nitride (g‐C3N4) has been used as photosensitizer to generate reactive oxygen species (ROS) for photodynamic therapy (PDT). However, its therapeutic efficiency was far from satisfactory. One of the major obstacles was the overexpression of glutathione (GSH) in cancer cells, which could diminish the amount of generated ROS before their arrival at the target site. Herein, we report that the integration of Cu2+ and g‐C3N4 nanosheets (Cu2+–g‐C3N4) led to enhanced light‐triggered ROS generation as well as the depletion of intracellular GSH levels. Consequently, the ROS generated under light irradiation could be consumed less by reduced GSH, and efficiency was improved. Importantly, redox‐active species Cu+–g‐C3N4 could catalyze the reduction of molecular oxygen to the superoxide anion or hydrogen peroxide to the hydroxyl radical, both of which facilitated the generation of ROS. This synergy of improved ROS generation and GSH depletion could enhance the efficiency of PDT for cancer therapy.  相似文献   

8.
The anticancer efficacy of photodynamic therapy (PDT) is limited due to the hypoxic features of solid tumors. We report synergistic PDT/chemotherapy with integrated tandem Fenton reactions mediated by ovalbumin encapsulation for improved in vivo anticancer therapy via an enhanced reactive oxygen species (ROS) generation mechanism. O2.− produced by the PDT is converted to H2O2 by superoxide dismutase, followed by the transformation of H2O2 to the highly toxic .OH via Fenton reactions by Fe2+ originating from the dissolution of co-loaded Fe3O4 nanoparticles. The PDT process further facilitates the endosomal/lysosomal escape of the active agents and enhances their intracellular delivery to the nucleus—even for drug-resistant cells. Cisplatin generates O2.− in the presence of nicotinamide adenine dinucleotide phosphate oxidase and thereby improves the treatment efficiency by serving as an additional O2.− source for production of .OH radicals. Improved anticancer efficiency is achieved under both hypoxic and normoxic conditions.  相似文献   

9.
Traditional photodynamic therapy (PDT) is dependent on externally applied light and oxygen, and the depth of penetration of these factors can be insufficient for the treatment of deep infections. The short half-life and short diffusion distance of reactive oxygen species (ROS) also limit the antibacterial efficiency of PDT. Herein, we designed a targeting singlet oxygen delivery system, CARG-Py, for irradiation-free and oxygen-free PDT. This system was converted to the “singlet oxygen battery” CARG-1O2 and released singlet oxygen without external irradiation or oxygen. CARG-1O2 is composed of pyridones coupled to a targeting peptide that improves the utilization of singlet oxygen in deep multidrug-resistant bacterial infections. CARG-1O2 was shown to damage DNA, protein, and membranes by increasing the level of reactive oxygen inside bacteria; the attacking of multiple biomolecular sites caused the death of methicillin-resistant Staphylococcus aureus (MRSA). An in vivo study in a MRSA-infected mouse model of pneumonia demonstrated the potential of CARG-1O2 for the efficient treatment of deep infections. This work provides a new strategy to improve traditional PDT for irradiation- and oxygen-free treatment of deep infections while improving convenience of PDT.  相似文献   

10.
Over the past several decades, nanotechnology has contributed to the progress of biomedicine, biomarker discovery, and the development of highly sensitive electroanalytical / electrochemical biosensors for in vitro and in vivo monitoring, and quantification of oxidative and nitrosative stress markers like reactive oxygen species (ROS) and reactive nitrogen species (RNS). A major source of ROS and RNS is oxidative stress in cells, which can cause many human diseases, including cancer. Therefore, the detection of local concentrations of ROS (e. g. superoxide anion radical; O2•−) and RNS (e. g. nitric oxide radical; NO and its metabolites) released from biological systems is increasingly important and needs a sophisticated detection strategy to monitor ROS and RNS in vitro and in vivo. In this review, we discuss the nanomaterials‐based ROS and RNS biosensors utilizing electrochemical techniques with emphasis on their biomedical applications.  相似文献   

11.
Reactive oxygen species (ROS) are critical for many cellular functions, and dysregulation of ROS involves the development of multiple types of tumors, including pancreatic cancer. However, ROS have been grouped into a single biochemical entity for a long time, and the specific roles of certain types of ROS in tumor cells (e.g., pancreatic ductal adenocarcinoma (PDAC)) have not been systematically investigated. In this work, a highly sensitive and accurate mass spectrometry-based method was applied to study PDAC cells of humans and of genetically modified animals. The results show that the oncogenic KRAS mutation promotes the accumulation of hydrogen peroxide (H2O2) rather than superoxide or hydroxyl radicals in pancreatic cancer cells. We further identified that the enriched H2O2 modifies cellular metabolites and promotes the survival of pancreatic cancer cells. These findings highlight the specific roles of H2O2 in pancreatic cancer development, which may provide new directions for pancreatic cancer therapy.  相似文献   

12.
《中国化学快报》2023,34(5):107805
Photodynamic therapy (PDT) agents may accumulate in skin and cause severe skin cytotoxicity. We report a pro-guest-based supramolecular strategy to selectively activate PDT in the reactive oxygen specie (ROS) overexpressed microenvironment, which is often existing in tumor and inflammatory tissues. PDT agents methylene blue (MB) and basic blue 17 (BB17) are used as model drugs. When encapsulated by acyclic cucurbit[n]uril (CB[n]), the efficacy of PDT agents is significantly inhibited. By contrast, in the presence of ROS (H2O2) and pro-guest, PDT agents are displaced and reactivated to show a dramatically enhanced PDT efficacy in cells.  相似文献   

13.
The intrinsic hypoxic tumor microenvironment and limited accumulation of photosensitizers(PSs) result in unsatisfied efficiency of photodynamic therapy(PDT).To enhance the PDT efficiency against solid tumors,a functional oxygen self-supplying and PS-delivering nanosystem is fabricated via the combination of catalase(CAT),chlorin e6(Ce6) and metal-phenolic network(MPN) capsule.It is demonstrated that the CAT encapsulated in the capsules(named CCM capsules) could catalyze the degradation of hydrog...  相似文献   

14.
《中国化学快报》2023,34(1):107653
Carbon monoxide (CO) gas therapy, a novel anti-tumor technique based on the cytotoxicity from the CO released in situ, has become one of the hot topics in cancer treatment. Since the technique is oxygen-independent, it displays promising therapeutic effect for hypoxic tumor where traditional photodynamic therapy shows limited efficacy and insufficient penetration depth. To fully address these limitations of PDT, we propose a synergetic sonodynamic-CO gas releasing strategy for the therapy of hypoxic tumor. In this work, two rhenium(I) tricarbonyl complexes with different substituted ligands are investigated for US-triggered ROS generation and CO release. Our results indicated that the electron-donating NMe2-substituted complex (Re-NMe2) exhibits stronger luminescence intensity and generates more singlet oxygen (1O2) than the electron-withdrawing NO2-substituted complex (Re-NO2). In addition, Re-NMe2 displays release of CO triggered by US, thus showing high sono-cytotoxicity to tumor cells in-vitro and in-vivo. The strong ROS-generating capability combined with rapid CO-releasing feature from Re-NMe2 has made it a powerful tool for the efficient treatment of hypoxic tumor.  相似文献   

15.
Photodynamic inactivation of microorganisms has gained substantial attention due to its unique mode of action, in which pathogens are unable to generate resistance, and due to the fact that it can be applied in a minimally invasive manner. In photodynamic therapy (PDT), a non-toxic photosensitizer (PS) is activated by a specific wavelength of light and generates highly cytotoxic reactive oxygen species (ROS) such as superoxide (O2−, type-I mechanism) or singlet oxygen (1O2*, type-II mechanism). Although it offers many advantages over conventional treatment methods, ROS-mediated microbial killing is often faced with the issues of accessibility, poor selectivity and off-target damage. Thus, several strategies have been employed to develop target-specific antimicrobial PDT (aPDT). This includes conjugation of known PS building-blocks to either non-specific cationic moieties or target-specific antibiotics and antimicrobial peptides, or combining them with targeting nanomaterials. In this review, we summarise these general strategies and related challenges, and highlight recent developments in targeted aPDT.  相似文献   

16.
In photodynamic therapy (PDT), the level of reactive oxygen species (ROS) produced in the cell directly determines the therapeutic effect. Improvement in ROS concentration can be realized by reducing the glutathione (GSH) level or increasing the amount of photosensitizer. However, excessive amounts photosensitizer may cause side effects. Therefore, the development of photosensitizers that reduce GSH levels through synergistically improving ROS concentration in order to strengthen the efficacy of PDT for tumor is important. We report a nano‐metal–organic framework (CuII‐metalated nano‐MOF {CuL‐[AlOH]2}n (MOF‐2, H6L=mesotetrakis(4‐carboxylphenyl)porphyrin)) based on CuII as the active center for PDT. This MOF‐2 is readily taken up by breast cancer cells, and high levels of ROS are generated under light irradiation. Meanwhile, intracellular GSH is considerably decreased owing to absorption on MOF‐2; this synergistically increases ROS concentration and accelerates apoptosis, thereby enhancing the effect of PDT. Notably, based on the direct adsorption of GSH, MOF‐2 showed a comparable effect with the commercial antitumor drug camptothecin in a mouse breast cancer model. This work provides strong evidence for MOF‐2 as a promising new PDT candidate and anticancer drug.  相似文献   

17.
Recently, photodynamic therapy (PDT) has been extensively applied in clinical and coadjuvant treatment of various kinds of tumors. However, the photosensitizer (PS) of PDT still lack of high production of singlet oxygen (1O2), low cytotoxicity and high biocompatibility. Herein, we propose a facile method for establishing a new core-shell structured Sn nanocluster@carbon dots (CDs) PS. Firstly, Sn4+@S-CDs complex is synthesized using the sulfur-doped CDs (S-CDs) and SnCl4 as raw materials, and subsequently the new PS (Sn nanocluster@CDs) is obtained after vaporization of Sn4+@S-CDs solution. Remarkably, the obtained Sn nanocluster@CDs show an enhanced fluorescence as well as a higher 1O2 quantum yield (QY) than S-CDs. The high 1O2 QY (58.3%) irradiated by the LED light (400–700 nm, 40 mW/cm2), induce the reduction of 4T1 cancer cells viability by 25%. More intriguingly, no visible damage happens to healthy cells, with little impact on liver tissue due to renal excretion, both in vitro and in vivo experiments demonstrate that Sn nanocluster@CDs may become a promising PS, owning a high potential for application in PDT.  相似文献   

18.
We report the rational design of metal–organic layers (MOLs) that are built from [Hf6O4(OH)4(HCO2)6] secondary building units (SBUs) and Ir[bpy(ppy)2]+‐ or [Ru(bpy)3]2+‐derived tricarboxylate ligands (Hf‐BPY‐Ir or Hf‐BPY‐Ru; bpy=2,2′‐bipyridine, ppy=2‐phenylpyridine) and their applications in X‐ray‐induced photodynamic therapy (X‐PDT) of colon cancer. Heavy Hf atoms in the SBUs efficiently absorb X‐rays and transfer energy to Ir[bpy(ppy)2]+ or [Ru(bpy)3]2+ moieties to induce PDT by generating reactive oxygen species (ROS). The ability of X‐rays to penetrate deeply into tissue and efficient ROS diffusion through ultrathin 2D MOLs (ca. 1.2 nm) enable highly effective X‐PDT to afford superb anticancer efficacy.  相似文献   

19.
Photodynamic therapy(PDT) has been gaining popularity in both scientific research and clinic applications due to its non-invasiveness and spatiotemporal targeting properties. Nevertheless, the local hypoxic microenvironment in tumor tissue impedes PDT universality. To overcome this drawback, a 2-pyridonebearing BODIPY photosensitizer was synthesized rationally and introduced to polyethyleneglycol-bpoly(aspartic acid) to form a photosensitizer-1O2 generation, storage/release...  相似文献   

20.
《中国化学快报》2021,32(12):3948-3953
Photodynamic therapy (PDT) has emerged as a potential clinical strategy for tumor therapy. It can generate reactive oxygen species (ROS) to cause the chemical damage of tumor cells and promote the immune killing effects of T cells on tumor cells in the presence of enough oxygen and PDT drugs. However, most solid tumors are in a state of oxygen deficiency, which seriously limit the efficacy of PDT in generation enough ROS. Besides, few safe PDT drugs with ideal pharmacokinetic behavior are available in the clinic, which severely limits the clinical transformation and application of PDT. Herein, we utilized manganese chloride to mineralize the hydrophilic indocyanine green/albumin polyplexes (ICG@BSA@MnO2) by using bio-mineralized method to solve these problems of PDT. These ICG@BSA@MnO2 nanoparticles could circulate in the blood for a long period other than quickly removed from body after 30 min like free ICG. When accumulated at the tumor site, ICG was responsively released in the presence of hydrogen peroxide. Apart this, the tumor hypoxia microenvironment was also reversed owing to enhanced O2 generation by the reaction of MnO2 with hydrogen peroxide. Benefits from the rich accumulation of ICG and ameliorated tumor hypoxia in the tumor sites, the enhanced generation of ROS could successfully promote the distribution of CD3+ and CD8+ T cells inside the tumors, which then lead to the amplified efficacy of PDT in both CT26 and B16F10 tumor models without causing any side effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号