首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The Knoevenagel reactions of malononitrile with acetophenone or 4‐substituted acetophenons were carried to give the corresponding 2‐(1‐aryle thylidene)malononitriles, which was further cyclized with sulfur using NaHCO3 as catalysts to generate 2‐amino‐5‐arylthiophene‐3‐carbonitrile 2 . The intermediate enamines 3 were prepared by refluxing of 2 with 5‐substituted‐1,3‐cyclohexanedione using p‐toluenesulfonic acid as catalyst. The title compounds 4‐amino‐3‐aryl ‐7‐substituted‐7,8‐dihydrothieno[2,3‐b]quinolin‐5(6H)‐one were synthesized by cyclization of 3 in the presence of K2CO3 and Cu2Cl2. The structures of all compounds were characterized by elemental analysis, IR, MS, and 1H‐NMR spectra.  相似文献   

2.
A series of 2‐amino‐7‐methoxy‐4‐aryl‐4H‐chromene‐3‐carbonitrile compounds 2 were obtained by condensation of 3‐methoxyphenol with β‐dicyanostyrenes 1 in absolute ethanol containing piperidine. The intermediate enamines 3 were prepared by compounds 2 with 5‐substituted‐1,3‐cyclohexanedione using p‐toluenesuflonic acid (TsOH) as catalyst. The title compounds 11‐amino‐3‐methoxy‐8‐substituted‐12‐aryl‐8,9‐dihydro‐7H‐chromeno[2,3‐b]quinolin‐10(12H)‐one 4 were synthesized by cyclization of the intermediate enamines 3 in THF with K2CO3 /Cu2Cl2 as catalyst. The structures of all compounds were characterized by elemental analysis, IR, MS, and 1H NMR spectra. The crystal structure of compound 4i was determined by single‐crystal X‐ray diffraction analysis.  相似文献   

3.
The 2‐arylidene‐3‐oxobutanenitrile derivatives 2 were prepared by the Knoevenagel condensation between aldehydes and 3‐oxobutanenitrile 1 , which was obtained by acid hydrolysis of β‐aminocrotononitrile. 3‐Acetyl‐2‐amino‐4H‐chromen‐5(6H)‐one derivatives 3 were synthesized by reaction of 2‐arylidene‐3‐oxobutanenitrile 2 and 5‐substituted‐1,3‐cyclohexanedione in ethylene glycol. The 11‐methyl‐3,8‐disubstituted‐12‐aryl‐3,4,7,8,9,12‐hexahydro‐1H‐chromeno[2,3‐b]quinoline‐1,10(2H)‐dione derivatives 4 were obtained by Friedländer reaction of compounds 3 with 5‐substituted‐1,3‐cyclohexanedione, using p‐toluenesulfonic acid monohydrate as catalyst. The structures of all novel compounds were characterized by elemental analysis, IR, MS, and 1H NMR spectra. The crystal and molecular structure of compound 4f has been determined by single crystal XRD analysis.  相似文献   

4.
We report on a novel method for the preparation of a new series of benzochromeno[2,3‐b]tetrahydroquinolin‐1‐one derivatives. The title compounds are prepared by the 5‐substituted‐1,3 ‐cyclohexanedione and 3‐amino‐1‐aryl‐1H‐benzo[f]chromene‐2‐carbonitrile or 2‐amino‐4‐aryl‐4H‐benzo[h]chromene‐3‐carbonitrile using dilute HCl, K2CO3, and Cu2Cl2 as catalysts. The method has the advantages of simple operation, high efficiency, and low toxicity. The structures of all compounds are characterized by elemental analysis, IR, MS, and 1H NMR spectra. Two single crystals are characterized by using X‐ray diffraction.  相似文献   

5.
Preparation of pyrano[2,3‐d]thiazole and thiazolo[4,5‐b]pyridine derivatives through multicomponent reactions (MCRs) was achieved by the reaction of 2‐(2‐amino‐4,5,6,7‐tetrahydrobenzo[b]thiophen‐3‐yl)thiazol‐4(5H)‐one with various active methylene reagents such as ethyl cyanoacetate or malononitrile in basic conditions containing diverse aromatic aldehyde. Furthermore, this study aims to evaluate the in vitro cytotoxic activity of the synthetic compounds against six cancer cell lines, and all the prepared compounds revealed valuable activity compared with the CHS‐828, which is the 2‐[6‐(4‐chlorophenoxy)hexyl]‐1‐cyano‐3‐pyridin‐4‐ylguanidine as the standard drug. Some of the pyrano[2,3‐d]thiazole and thiazolo[4,5‐b]pyridine derivatives showed the highest antitumor activity towards the six cancer cell lines. Moreover, (c‐Met) enzymatic activity of the most potent compounds showed that compounds 3b 2‐(2‐amino‐4,5,6,7 tetrahydrobenzo[b]thiophen‐3‐yl)‐5‐hydroxy‐7‐(2‐hydroxy‐phenyl)‐7H‐pyrano[2,3‐d]thiazole‐6 carbonitrile and 5e 2‐(2‐amino‐4,5,6,7‐tetrahydrobenzo[b]thiophen‐3‐yl)‐5‐hydroxy‐7‐phenyl‐4,7‐dihydrothiazolo[4,5‐b]pyridine‐6‐carbonitrile were with higher activities than foretinib. Three compounds were selected to examine their Pim‐1 kinase where compounds 3b and 7b showed the highest inhibitions.  相似文献   

6.
The regioselective reactions of luminol with 1,3‐cyclohexanedione (or malononitrile) and aromatic aldehydes catalyzed by 2‐1′‐methylimidazolium‐3‐yl‐1‐ethyl sulfate were developed to synthesize 7‐amino‐3,4‐dihydro‐2H‐indazolo[2,1‐b]phthalazine‐1,6,11(13H)‐triones and 3,9‐diamino‐5,10‐dihydro‐5,10‐dioxo‐1H‐pyrazolo[1,2‐b]phthalazine‐2‐carbonitriles in good to excellent yields in short times.  相似文献   

7.
Some inimitable and therapeutic coumarin‐substituted fused[1,2,4]triazolo‐[3,4‐b][1,3,4]thiadizole derivatives were synthesized by the cyclocondensation reaction of 2‐oxo‐2H‐chromene‐3‐carboxylic acid ( 1 ) and 4‐amino‐5‐hydrazinyl‐4H‐[1,2,4]‐triazole‐3‐thiol ( 2 ) by using phosphorous oxychloride as a cyclizing agent. This cyclized intermediate 3‐(3‐hydrazino‐[1,2,4]triazolo[3,4‐b][1,3,4]thiadiazol‐6‐yl)‐chromen‐2‐one ( 3 ) later condensation with various ethyl 2‐(2‐arylhydrazono)‐3‐oxobutanoates ( 4 ) in NaOAc/MeOH under reflux conditions afforded the corresponding new series of aryl‐substituted hydrazono‐pyrazolyl‐[1,2,4]triazolo[3,4‐b][1,3,4][thiadiazol]‐coumarin derivatives ( 5 ) in good to excellent yields. The structures of newly synthesized compounds were established on the basis of elemental analysis, IR, 1H NMR and mass spectroscopic studies.  相似文献   

8.
Reaction of 3‐(3‐cyanopropoxy)[1]benzofuran‐2‐carbonitriles with potassium tert‐butoxide gave 5‐amino‐1,2‐dihydro[1]benzofuro[3,2‐d]furo[2,3‐b]pyridines and 5‐amino‐2,3‐dihydro[1]benzofuro[3,2‐b]oxepin‐4‐carbonitriles as new ring systems. Reactions of the 5‐chloro derivative, obtained from 5‐amino‐1,2‐dihydro[1]benzofuro[3,2‐d]furo[2,3‐b]pyridine, produced a dihydrofuran ring‐opened compound and 5‐substituted compounds. J. Heterocyclic Chem.,(2011).  相似文献   

9.
A green and convenient approach to the synthesis of a series of 4,7‐diaryl‐5‐oxo‐4H‐benzo[b]pyran derivatives from appropriate aromatic aldehydes and 5‐aryl‐1,3‐cyclohexanedione with malononitrile in the presence of dilute HCl as catalyst (30 mmol/L) is described. This method provides several advantages such as environmental friendliness, low cost, high yields, and simple work up procedure. The structures of all compounds were characterized by infrared (IR), mass spectrometry (MS), 1H NMR, and elemental analysis. The crystal structure of trans/cis‐2‐amino‐3‐cyano‐7‐(4′‐methoxo‐phenyl)‐4‐phenyl‐5‐oxo‐4H‐benzo[b]pyran, g , was determined by single crystal X‐ray diffraction analysis. The crystal of compound g belongs to monoclinic with space group P 21/c, a = 8.477(3) nm, b = 18.948(6) nm, c = 24.915(7) nm, α = 90.00°, β = 107.388(11)°, γ= 90.00°, Z = 8, V = 3.819(2) nm3, R1 = 0.0754, wR2 = 0.2042.  相似文献   

10.
A new class of substituted 2‐amino‐4‐(2‐ethoxybenzo[d][1,3]dioxol‐5‐yl)‐4H‐pyran‐3‐carbonitrile derivatives catalyzed by Imidazole under mild reaction conditions has been developed. A variety of functionalized 2‐amino‐4‐(2‐ethoxybenzo[d][1,3]dioxol‐5‐yl)‐4H‐pyran‐3‐carbonitrile scaffolds were assembled in high yields by this catalytic protocol. The newly synthesized compounds have been characterized by IR, 1H NMR, 13C NMR, and mass spectral data. The compounds were then evaluated for antimicrobial activities.  相似文献   

11.
In continuation of our previous work, a series of novel thiophene derivatives 4 , 5 , 6 , 8 , 9 , 9a , 9b , 9c , 9d , 9e , 10 , 10a , 10b , 10c , 10d , 10e , 11 , 12 , 13 , 14 , 15 , 16 were synthesized by the reaction of ethyl 2‐amino‐4,5,6,7‐tetrahydrobenzo[b]thiophene‐3‐carboxylate ( 1 ) or 2‐amino‐4,5,6,7‐tetrahydrobenzo[b]thiophene‐3‐carbonitrile ( 2 ) with different organic reagents. Fusion of 1 with ethylcyanoacetate or maleic anhydride afforded the corresponding thienooxazinone derivative 4 and N‐thienylmalimide derivative 5 , respectively. Acylation of 1 with chloroacetylchloride afforded the amide 6 , which was cyclized with ammonium thiocyanate to give the corresponding N‐theinylthiazole derivative 8 . On the other hand, reaction of 1 with substituted aroylisothiocyanate derivatives gave the corresponding thiourea derivatives 9a , 9b , 9c , 9d , 9e , which were cyclized by the action of sodium ethoxide to afford the corresponding N‐substituted thiopyrimidine derivatives 10a , 10b , 10c , 10d , 10e . Condensation of 2 with acid anhydrides in refluxing acetic acid afforded the corresponding imide carbonitrile derivatives 11 , 12 , 13 . Similarly, condensation of 1 with the previous acid anhydride yielded the corresponding imide ethyl ester derivatives 14 , 15 , 16 , respectively. The structures of newly synthesized compounds were confirmed by IR, 1H NMR, 13C NMR, MS spectral data, and elemental analysis. The detailed synthesis, spectroscopic data, LD50, and pharmacological activities of the synthesized compounds are reported.  相似文献   

12.
In this paper, preparation of 2‐Amino‐4‐aryl‐7,7‐dimethyl‐5‐oxo‐4H‐5,6,7,8‐tetrahydrobenzo[b]pyran derivatives from aromatic aldehyde, malononitrile or cyanoacetate and 5,5‐dimethyl‐1,3‐cyclohexanedione in ionic liquid [bmim+][BF4?] was described. Compared with other methods, this new method has the advantages of easier work‐up, milder reaction conditions, high yields and environmentally benign procedure.  相似文献   

13.
2‐Amino‐3‐cyano‐4,5,6,7‐tetrahydrobenzo[b]thiophene 1a or 2‐amino‐3‐cyano‐4,7‐di‐ phenyl‐5‐methyl‐4H‐pyrano[2,3‐c]pyrazole 2a reacted with phenylisocyanate in dry pyridine to give 2‐(3‐phenylureido)‐3‐cyanobenzo[b]thiophene 1b or 2‐disubstituted amino‐3‐cyanopyranopyrazole 2b derivative. However, when 1a and 2a were refluxed with carbon disulfide in 10% ethanolic sodium hydroxide solution, they afforded the thieno[2,3‐d]pyrimidin‐2,4‐dithione derivative 5 in the former case, 2,4‐dicyano‐1,3‐bis(dithio carboxamino)cyclobuta‐1,3‐ diene 6 and pyrazolopyranopyrido[2,3‐d]pyrimidin‐ 2,4‐dithione derivative 7 in the latter one. Treatment of 2a with thiourea in refluxing ethanol in the presence of potassium carbonate gave 2,2′‐dithiobispyrimidine derivative 9 (major) in addition to pyranopyrazole derivative 10 and 2,2′‐dithiobis ethoxypyrimidine derivative 11 in minor amounts. The structures of all products were evidenced by microanalytical and spectral data. © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:6–11, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.20070  相似文献   

14.
A series of novel 10‐amino‐9‐aryl‐2,3,4,5,6,7,9,10‐octahydroacridine‐1,8‐dione derivatives 4 were synthesized by hydrazine or phenylhydrazine and 9‐aryl‐1,8‐dioxo‐2,3,4,5,6,7,9‐heptahydroxanthene derivatives 3 , which were prepared by 5‐substituted‐1,3‐cyclohexanedione 1 and aromatic aldehydes 2 in the presence of concentrated H2SO4 as a catalyst in water. The structures of all compounds were characterized by IR, MS, 1H‐NMR, and elemental analysis, and the title compounds possess good fluorescence properties. J. Heterocyclic Chem., (2012).  相似文献   

15.
Reaction of 5,6‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinoline‐1,2‐dione ( 1 ) with two equivalents of some 6‐aminouracils (or 6‐amino‐2‐thiouracil) generates spirocyclic tetrahydrobenzo[if]quinolizines ( 7 ). The one‐pot, three‐component reaction of amido ketone ( 1 ) with 6‐aminouracil (or 6‐amino‐2‐thiouracil) and a cyclic six‐membered 1,3‐diketone produces spirocyclic tetrahydropyrrolo[3,2,1‐ij]quinolinones ( 15 ).  相似文献   

16.
Synthesis of novel 2‐3‐methyl‐5‐[(E)‐2‐aryl‐1‐ethenyl]‐4‐isoxazolyl‐4,10a‐diaryl‐1,10a‐dihydro‐2H‐benzo[d]pyrazino[2,1‐b][1,3]oxazoles 5 were simply achieved by the reaction of 2‐[3‐methyl‐5‐[(E)‐2‐aryl‐1‐ethenyl]‐4‐isoxazolyl(2‐oxo‐2‐arylethyl)amino]‐1‐aryl‐1‐ethanones 3 with o‐aminophenol 4 in the presence of CAN catalyst. The intermediates, 2‐[3‐methyl‐5‐[(E)‐2‐aryl‐1‐ethenyl]‐4‐isoxazolyl(2‐oxo‐2‐arylethyl)amino]‐1‐aryl‐1‐ethanones 3 , were prepared by the reaction of 4‐amino‐3‐methyl‐5‐styrylisoxazole 1 , with phenacylbromides 2 in ethanol in the presence of K2CO3. The structures of the newly synthesized compounds 3a , 3b , 3c , 3d , 3e , 3f , 3g , 3h , 3i , 3j , 3k , 3l and 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i , 5j , 5k , 5l have been confirmed by analytical and spectral data.  相似文献   

17.
The reaction of the 2‐(1‐alkylhydrazino)‐6‐chloroquinoxaline 4‐oxides 1a,b with diethyl acetone‐dicarboxylate or 1,3‐cyclohexanedione gave ethyl 1‐alkyl‐7‐chloro‐3‐ethoxycarbonylmethylene‐1,5‐dihydropyridazino[3,4‐b]quinoxaline‐3‐carboxylates 5a,b or 6‐alkyl‐10‐chloro‐1‐oxo‐1,2,3,4,6,12‐hexahydroquinoxalino[2,3‐c]cinnolines 7a,b , respectively. Oxidation of compounds 5a,b with nitrous acid afforded the ethyl 1‐alkyl‐7‐chloro‐3‐ethoxycarbonylmethylene‐4‐hydroxy‐1,4‐dihydropyridazino‐[3,4‐b]quinoxaline‐4‐carboxylates 9a,b , whose reaction with base provided the ethyl 2‐(1‐alkyl‐7‐chloro‐4‐oxo‐1,4‐dihydropyridazino[3,4‐b]quinoxalin‐3‐yl)acetates 6a,b , respectively. On the other hand, oxidation of compounds 7a,b with N‐bromosuccinimide/water furnished the 4‐(1‐alkyl‐7‐chloro‐4‐oxo‐1,4‐dihydropyridazino[3,4‐b]quinoxalin‐3‐yl)butyric acids 8a,b , respectively. The reaction of compound 8a with hydroxylamine gave 4‐(7‐chloro‐4‐hydroxyimino‐1‐methyl‐1,4‐dihydropyridazino[3,4‐b]quinoxalin‐3‐yl)‐butyric acid 12 .  相似文献   

18.
Several derivatives of the new pyrimido[4′,5′:3,4]pyrazolo[1,2‐b]phthalazine‐4,7,12‐trione ring system have been prepared by the reaction of 3‐amino‐1‐aryl‐5,10‐dioxo‐5,10‐dihydro‐1H‐pyrazolo[1,2‐b]phthalazine‐2‐carbonitriles with aliphatic carboxylic acids in the presence of phosphoryl chloride (POCl3). The synthesized compounds were characterized on the basis of IR, 1H NMR, and 13C NMR spectral and microanalytical data.  相似文献   

19.
The X‐ray crystal analyses of the two 11‐deoxy‐didehydrohexahydrobenzo[c]phenanthridine‐type alkaloid derivatives 3 and 4 , derived from (±)‐corynoline ( 1 ) and (+)‐chelidonine ( 2 ), established their structures as (±)‐(5bRS,12bRS)‐5b,12b,13,14‐tetrahydro‐5b,13‐dimethyl[1,3]benzodioxolo[5,6‐c]‐1,3‐dioxolo[4,5‐i]phenanthridine ( 3 ) and (+)‐rel‐(12bR)‐7,12b,13,14‐tetrahydro‐13‐methyl[1,3]benzodioxolo[5,6‐c]‐1,3‐dioxolo[4,5‐i]phenanthridine ( 4 ). The conformations of 3 and 4 in CDCl3 were determined on the basis of 1H‐ and 13C‐NMR spectroscopy.  相似文献   

20.
2′‐Substituted 5′,6′,7′,8′‐tetrahydro‐4′H‐spiro[cyclohexane‐1,9′‐[1,2,4]triazolo[5,1‐b]quinazolines] 3a‐d were synthesized by condensation of 3‐substituted 5‐amino‐1,2,4‐triazoles 1a‐d with 2‐cyclohexylidene cyclohexanone 2 in DMF. The compounds 3 were hydrogenated with sodium borohydride in ethanol to give 2′‐substituted cis‐4a',5′,6′,7′,8′,8a'‐hexahydro‐4′H‐spiro[cyclohexane‐1,9′‐[1,2,4]triazolo[5,1‐b]quinazolines] 4a‐d in high yields. The reactions of alkylation, acylation and sulfonylation of the compounds 4 were studied. The structure of the synthesized compounds was determined on the basis of NMR measurements including HSQC, HMBC, NOESY techniques and confirmed by the X‐ray analysis of 6 and 11b . The described synthetic protocols provide rapid access to novel and diversely substituted hydrogenated [1,2,4]triazolo[5,1‐b]quinazolines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号