首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tricyclic isatin, 5,6‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinoline‐1,2‐dione ( 1 ), reacts with a combination of an aryl cyanomethyl ketone 8 and a 5‐amino‐1‐arylpyrazole 7 to generate spirocyclic products 9 .  相似文献   

2.
The tricyclic isatin, 5,6‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinoline‐1,2‐dione, undergoes three‐component, one‐pot reactions with 1‐aryl‐3‐methylpyrazole‐5‐amines and cyclohexane‐1,3‐diones producing hexacyclic spiro products, hexahydrospiro[pyrazolo[3,4‐b]quinoline‐4,1‐pyrrolo[3,2,1‐ij]quinoline‐2′,5(1H,4′H)‐diones]. Comparable spiro condensation products are also obtained using 4‐hydroxy‐2H‐1‐benzopyran‐2‐one in place of cyclohexane‐1,3‐diones.  相似文献   

3.
2‐Methyl‐3H‐indoles 1 cyclize with two equivalents of ethyl malonate 2 to form 4‐hydroxy‐11H‐benzo[b]pyrano[3,2‐f]indolizin‐2,5‐diones 3, whereas 2‐mefhyl‐2,3‐dihydro‐1H‐indoles 9 give under similar conditions regioisomer 8‐hydroxy‐5‐methyl‐4,5‐dihydro‐pyrrolo[3,2,1‐ij]pyrano[3,2‐c]quinolin‐7,10‐diones 10 . The pyrone rings of 3 and 9 can be cleaved either by alkaline hydrolysis to give 7‐acetyl‐8‐hydroxy‐10H‐pyrido[1,2‐a]indol‐6‐ones 4 or 5‐acetyl‐6‐hydroxy‐2‐methyl‐1,2‐dihydro‐4H‐pyrrolo‐[3,2,1‐ij]quinolin‐4‐ones 11 , respectively. Chlorination of 3 and 9 with sulfurylchloride gives under subsequent ring opening 7‐dichloroacetyl‐8‐hydroxy‐10H‐pyrido[1,2‐a]indol‐6‐ones 5 or 5‐dichloracetyl‐6‐hydroxy‐2‐methyl‐1,2‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinolin‐4‐ones 12 . The dichloroacetyl group of 5 can be reduced with zinc to 7‐acetyl‐8‐hydroxy‐10H‐pyrido[1,2‐a]indol‐6‐ones 7. Treatment of the acetyl compounds 4, 7 and 11 with 90% sulfuric acid cleaves the acetyl group and yields 8‐hydroxy‐10H‐pyrido[1,2‐a]‐indol‐6‐ones 6 and 8 , and 6‐hydroxy‐2‐methyl‐1,2‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinolin‐4‐ones 13 . Reaction of dichloroacetyl compounds 12 with sodium azide yields 6‐hydroxy‐2‐methyl‐5‐(1H‐tetrazol‐5‐ylcarbonyl)‐1,2‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinolin‐4‐ones 14 via intermediate geminal diazides.  相似文献   

4.
The 2,3‐dihydro‐7‐methyl‐1H,5H‐pyrido[3,2,1‐ij]quinoline‐1,5‐dione derivatives 9 and 10 were prepared from 3‐(5,7‐dimethoxy‐4‐methyl‐2‐oxo‐2H‐quinolin‐1‐yl)propionitrile ( 6 ). Cyclodehydration of the amide 8 gave 1,2‐dihydro‐7,9‐dimethoxy‐6‐methylpyimido[1,2‐a]quinolin‐3‐one ( 11 ).  相似文献   

5.
This paper describes a convenient and efficient synthesis of new fused tricyclic diazepino[3,2,1‐ij]quinolines and substituted pyrido[1,2,3‐de]quinoxalines. o‐Phenylenediamines are transformed in the tricycle nucleus in only a few‐step synthetic sequence to produce ethyl 2,8‐dioxo‐1,2,3,4‐tetrahydro‐8H [1,4]diazepino[3,2,1‐ij]quinoline‐7‐carboxylate, ethyl 8‐oxo‐1,2,3,4‐tetrahydro‐8H‐[1,4]diazepino[3,2,1‐ij]quinoline‐7‐carboxylate and ethyl 2,7‐dioxo‐2,3‐dihydro‐1H,7H‐pyrido[1,2,3‐de]quinoxaline‐6‐carboxylate. The method is economical and simple to perform.  相似文献   

6.
Three‐component reactions of 5,6‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinoline‐1,2‐dione with malononitrile, or ethyl cyanoacetate, and cyclic six‐membered or a five‐membered 1,3‐diketone, produce spiro[4H‐pyran‐3,3′‐oxindoles].  相似文献   

7.
Knoevenagel condensation of 5,6‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinoline‐1,2‐dione 3 with aryl cyanomethyl ketones 9 generates 3‐(aroyl(cyano)methylidene)oxindoles 10 that react with cyclic 1,3‐diketones 11 to generate polycyclic hemiacetal spiro[4H‐2,3‐dihydropyran‐3,3′‐oxindoles] 13 .  相似文献   

8.
The synthesis of some derivatives of 1,2,5,6-tetrahydro-4H-pyrrolo[3,2,1-ij]quinolin-4-one (pyroquilon) having potential fungicidal activity has been accomplished starting with readily available 6-hydroxy-1,2-dihydro-4-pyrrolo[3,2,1-ij]quinolin-4-ones 3, 7. Functionalization in 6- or 5-position gave rise to the corresponding 6-and 5-substituted derivatives 8-12, 17 and 13-16, 20, 21 respectively. The formation of pyrrolo[3,2,1-ij]-pyrano[3,2-c]quinolines ( 5, 22, 23 ) and their degradation to acyl-substituted derivatives of 7 was studied.  相似文献   

9.
Reaction 6H‐pyrrolo[3,2,1‐de ]acridine‐1,2‐dione ( 7 ) with cyclic 1,3‐dicarbonyl compounds in the presence of malononitrile or ethyl cyanoacetate generates spiro[4H‐pyran‐3,3′‐oxindoles] 8 .  相似文献   

10.
A one‐pot, three‐component method for the efficient and simple synthesis of novel 2′‐amino‐8′,9′‐dihydro‐3′H‐spiro[indoline‐3,5′‐pyrimido[4,5‐b]quinoline]‐2,4′,6′(7′H,10′H)‐trione derivatives in aqueous media is reported. J. Heterocyclic Chem., (2011).  相似文献   

11.
Reaction of 1‐amino‐3‐arylpyrido[1,2‐a]benzimidazole‐2,4‐dicarbonitrile (1) with dimethylformamide‐dimethylacetal (DMF‐DMA) gave 1 ‐[N,N‐(dimethylaminomethylene)amino]‐3‐arylpyrido[1,2‐a]benzimidazole‐2,4‐dicarbonitrile (2). Compounds (1) reacted with triethylorthoformate yielding 1‐[N‐(ethoxymethylene)amino]‐3‐arylpyrido[1,2‐a]benzimidazole‐2,4‐dicarbonitrile (3). 3‐Amino‐4‐imino‐5‐aryl‐6‐cyanopyrimido[5′,4′:5,6]pyrido[1,2‐α] benzimidazole (4) was synthesized via condensation of either (2) or (3) with hydrazine hydrate. Reactions of (4) with acetic anhydride, ethyl chloroformate or aryl isothiocyanate yielded the respective derivative of the new ring system namely 1,2,4‐triazolo[2″,3″:6′,1′]pyrimido[4′,5′:2,3]pyrido[1,2‐a]benzimidazole (5–7).  相似文献   

12.
A simple and effective two‐step approach to tricyclic pyrimidine‐fused benzazepines has been adapted to give the tetracyclic analogues. In (RS)‐8‐chloro‐6‐methyl‐1,2,6,7‐tetrahydropyrimido[5′,4′:6,7]azepino[3,2,1‐hi]indole, C15H14ClN3, (I), the five‐membered ring adopts an envelope conformation, as does the reduced pyridine ring in (RS)‐9‐chloro‐7‐methyl‐2,3,7,8‐tetrahydro‐1H‐pyrimido[5′,4′:6,7]azepino[3,2,1‐ij]quinoline, C16H16ClN3, (II). However, the seven‐membered rings in (I) and (II) adopt very different conformations, with the result that the methyl substituent occupies a quasi‐axial site in (I) but a quasi‐equatorial site in (II). The molecules of (I) are linked by C—H...N hydrogen bonds to form C(5) chains and inversion‐related pairs of chains are linked by a π–π stacking interaction. A combination of a C—H...π hydrogen bond and two C—Cl...π interactions links the molecules of (II) into complex sheets. Comparisons are made with some similar fused heterocyclic compounds.  相似文献   

13.
Aldol condensation of 5,6‐dihydro‐4H‐pyrrolo[3,2,1‐ij ]quinoline‐1,2‐dione with aryl methyl ketones generates 3‐(aroylmethylidene)oxindoles, which react with hydrazine to generate tricyclic spiro[3H‐pyrazole‐3,3′‐oxindoles].  相似文献   

14.
3‐Amino‐4‐aryl‐5‐ethoxycarbonyl‐6‐methylthieno[2,3‐b]pyridine‐2‐carboxamides 3a‐c were prepared from ethyl 4‐aryl‐3‐cyano‐6‐methyl‐2‐thioxo‐1,2‐dihydropyridine‐5‐carbonylates 1a‐c and reacted with some carbonyl compounds to give tetrahydropyridothienopyrimidine derivatives 6a‐c, 7a‐c and 8a‐c , respectively. Treatment of compound 3c with chloroacetyl chloride led to the formation of a next key compound, ethyl 2‐chloromethyl‐4‐oxo‐3,4‐dihydropyrido[3′,2′:4,5]thieno[3,2‐d]pyrimidine‐8‐carboxylate 9 . Also, 3‐amino‐2‐benzimidazolylthieno[2,3‐b]pyridine‐5‐carboxylate 5 and 2‐(3′‐aminothieno [2,3‐b]pyridin‐2′‐yl)‐4‐oxo‐3,4‐dihydropyrido[3′,2′:4,5]thieno[3,2‐d]pyrimidine‐8‐carboxylate 17 were prepared from 1c. The compounds 5, 9 and 17 were used as good synthons for other pyridothienopyrimidines and pyridothienopyrimidobenzimidazoles as well as for related fused polyheterocyclic systems.  相似文献   

15.
A one‐step synthesis of ethyl 2,3‐dihydronaphtho[1,2‐b]furan‐2‐carboxylate and/or ethyl 4′‐oxospiro[cyclopropane‐1,1′(4′H)‐naphthalene]‐2′‐carboxylate derivatives 2 and 3 , respectively, from substituted naphthalen‐1‐ols and ethyl 2,3‐dibromopropanoate is described (Scheme 1). Compounds 2 were easily aromatized (Scheme 2). In the same way, 3,4‐dibromobutan‐2‐one afforded the corresponding 1‐(2,3‐dihydronaphtho[1,2‐b]furan‐2‐yl)ethanone and/or spiro derivatives 8 and 9 , respectively (Scheme 6). A mechanism for the formation of the dihydronaphtho[1,2‐b]furan ring and of the spiro compounds 3 is proposed (Schemes 3 and 4). The structures of spiro compounds 3a and 3f were established by X‐ray structural analysis. The reactivity of compound 3a was also briefly examined (Scheme 9).  相似文献   

16.
The synthesis of the title compounds was achieved using the key intermediate ethyl 4,6‐dimethyl‐3‐(pyrrol‐1‐yl)thieno[2,3‐b]pyridine‐2‐ carboxylate 2. This latter compound was obtained via the interaction of the thienopyridine amino ester 1 with 2,5 dimethoxytetrahydrofuran in acidic medium.  相似文献   

17.
A novel and facile one‐pot synthesis of spiro cyclic 2‐oxindole derivatives of pyrimido[4,5‐b]quinoline‐4,6‐dione, pyrido[2,3‐d:6,5‐d′]dipyrimidine‐2,4,6‐trione, and indeno[2′,1′:5,6]pyrido [2,3‐d]pyrimidine employing 6‐aminothiouracil (or 6‐aminouracil), isatin, and cyclic 1,3‐diketone (e.g. 1,3‐indanedione, dimedone, or barbituric acid) has been developed.  相似文献   

18.
Benzo[h]pyrimido[4,5‐b]quinolines ( 3 ) have been synthesized via a regiospecific cyclocondensation reaction between 6‐aminopyrimidines ( 1 ) and 2‐dimethylaminomethylentetralone hydrochloride ( 2 ). The linear structure of the final compounds were determined by nmr measurements, especially by 1H,1H, 1H,13C COSY and DEPT experiments.  相似文献   

19.
The 3‐amino‐6‐(trifluoromethyl)furo[2,3‐b]pyridine‐2‐carbohydrazide ( 5 ) was prepared from 3‐cyano‐6‐trifluoromethyl‐2(1H)pyridone ( 2 ) in series of steps via selective O‐alkylation, Thorpe–Ziegler cyclization followed by reaction with hydrazine hydrate. The 2‐carbohydrazide ( 5 ) was further reacted with aliphatic acids under different reaction temperatures to form a series of novel N‐acylfuro[2,3‐b]pyridine‐2‐carbohydrazide ( 6 ) and pyrido[3′,2′:4,5]furo[3,2‐d]pyrimidine derivatives ( 7 ). All the compounds 6 and 7 were screened for cytotoxic activity against breast carcinoma MD Anderson‐Metastatic Breast (MDA‐MB) 231 (aggressive) cell lines at 10 µM concentration. Compounds 6a , 6b , and 6c showed promising activity.  相似文献   

20.
6‐(2‐Thienyl)‐4‐(trifluoromethyl)‐1H‐pyrazolo[3,4‐b]pyridine‐3‐amine reacted with different active methylene compounds to afford pyridopyrazolopyrimidine derivatives. On the other hand, it reacted with some halo compounds to give the imidazo[1′,2′:1,5]pyrazolo[3,4‐b]pyridine derivatives. Also, it diazotized to give the corresponding diazonium chloride that is coupled with several active methylene compounds to give the corresponding triazine derivatives. Furthermore, compound 3‐amino‐6‐(2(thienyl)‐4‐(trifluoromethyl)thieno[2,3‐b]pyridine‐2‐carbohydrazide reacted with some β‐dicarbonyl compounds and some sulfur‐containing compounds to afford the corresponding pyrazolyl oxadiazolylthieno[2,3‐b]pyridine derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号