首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present work, dynamic compression response of polypropylene (PP) based composites reinforced with Kevlar/Basalt fabrics was investigated. Two homogeneous fabrics with Kevlar (K3D) and Basalt (B3D) yarns and one hybrid (H3D) fabric with a combination of Kevlar/Basalt yarns were produced. The architecture of the fabrics was three-dimensional angle-interlock (3D-A). Three different composite laminates were manufactured using vacuum-assisted compression molding technique. The high strain rate compression loading was applied using a Split-Hopkinson Pressure Bar (SHPB) set-up at a strain rate regime of 3633–5235/s. The results indicated that the dynamic compression properties of thermoplastic 3D-A composites are strain rate sensitive. In all the composites, the peak stress, toughness and modulus were increased with strain rate. However, the strain at peak stress of Basalt reinforced composites (B3D, H3D) decreased approximately by 25%, while for K3D specimens it increased approximately by 15%. The K3D composites had a higher strain rate as compared to the B3D and H3D composites. In the case of K3D composite, except strain at peak stress, remaining dynamic properties were lower than the B3D composite, however, hybridization increased these properties. The failure mechanisms of 3D-A composites were characterized through macroscopic and scanning electron microscopy (SEM).  相似文献   

2.
Tensile and compression properties of self-reinforced poly(ethylene terephthalate) (SrPET) composites has been investigated. SrPET composites or all-polymer composites have improved mechanical properties compared to the bulk polymer but with maintained recyclability. In contrast to traditional carbon/glass fibre reinforced composites, SrPET composites are very ductile, resulting in high failure strains without softening or catastrophic failure. In tension, the SrPET composites behave linear elastically until the fibre-matrix interface fails, at which point the stiffness starts decreasing. As the material is further strained, strain hardening occurs and the specimen finally fails at a global strain above 10%. In compression, the composite initially fails through fibre yielding, and at higher strains through fibre bending. The stress-strain response is reminiscent of an elastic-perfectly plastic material with a high strain to failure (typically over 10%). This indicates that SrPET composites are not only candidates as semi-structural composites but also as highly efficient energy absorbing materials.  相似文献   

3.
Three-dimensional (3D) structure-reinforced flexible polymer composites have great potential as personal protective materials. These composites exhibit excellent mechanical properties and failure mechanisms than typical rigid composites because of the complex dynamic reaction processes caused by the 3D structure in response to impact. This paper comprehensively reviews the impact resistance mechanism of 3D structure-reinforced flexible polymer composites by combining current results with relevant investigations. 3D woven fabric reinforcements and flexible matrix materials of flexible polymer composites systems are presented in this paper. The classification for 3D woven fabric reinforcements is reviewed, as well as the effect of reinforcement structures on the impact resistance of the flexible composites. Furthermore, several flexible matrix are introduced. Several external factors affecting the impact resistance of composites are then discussed. Finally, the impact damage mechanism of 3D structure-reinforced flexible polymer composites is summarized and analyzed.  相似文献   

4.
A hybrid of flax and carbon fibers was considered as an effective way to enhance the mechanical and hydrothermal resistance of flax-reinforced polymer composites. In this study, hybrid composites based on three layers of cross-ply flax fabrics, two layers of unidirectional carbon fabrics, and an epoxy resin were investigated in terms of the tensile, three-point bending, impact, and water absorption properties. The flax fabric reinforcement of the hybrid composites contributed to an improvement in the toughness, whereas the carbon fabric contributed to an improvement in their hydrothermal resistance and overall strength and stiffness. The hybrid composites with carbon fibers on the surface (CFFFC) exhibited brittle failure in the tensile test, whereas those with alternating layers (FCFCF) exhibited greater plastic deformation. In addition, the failure strain of the CFFFC samples showed a negative hybrid effect, whereas that of the FCFCF samples improved 63.5% compared with that of carbon-fiber-reinforced polymer composites. A positive hybrid effect on the impact performance of hybrid reinforced epoxy composites containing the unidirectional carbon fabric and cross-ply flax fabric was observed. At 40 °C and 80% relative humidity, the diffusion rate of water molecules in the FCFCF samples was 16 times that in the CFFFC samples.  相似文献   

5.
《中国化学》2017,35(10):1586-1594
The aramid fabric (AF )‐reinforced polyimide (PI ) composites filled with carbon black (CB ) were fabricated by means of a thermal imidization and their mechanical, thermal and electrochemical behaviors were comparatively investigated. Experimental results showed that the tensile strength of composite increased with an increase of the CB , meanwhile, the addition of 5 wt% CB and AF increased the tensile modulus to 5682.0 MPa . The superior mechanical properties of the composites were attributed to the good dispersion and effective stress transfer between the polymer and CB , as evidenced by the results from X‐ray diffraction (XRD ) and morphological studies. Besides, the thermal‐nonoxidative stability of PI was significantly improved by the incorporation of CB and AF . Furthermore, the CB /AF /PI composite was employed as the supercapacitor electrode in the 6 mol/L KOH aqueous electrolyte solution, which exhibited a specific capacitance of 510 F•g−1 at 10 mV •s−1. It also exhibited excellent long‐term stability, and the energy density was stable with the increase in the power density. The super performance of the composite electrode is attributed to the synergistic effects of CB particles and organic polymer.  相似文献   

6.
In this study, the influence of hybridization on the compression response of thermoplastic matrix-based composites under high strain rate loading was investigated. The intra-ply and inter-ply hybrid composites were manufactured with Kevlar/Basalt yarns as the reinforcements with Polypropylene as a matrix. Cylindrical composite specimens were laser cut from the flat compression moulded laminates. The composite specimens were loaded under high strain rate using split-Hopkinson pressure bar setup at strain rates ranging from 2815/s to 5481/s. The study revealed differences in the rate-dependent growth of peak stress, peak strain and toughness with the strain rate. Intra-ply hybrid composites with alternate weaving of Kevlar and basalt yarns exhibited highest peak stress as compared to the Inter-ply hybrid composites (alternate layers of Kevlar and basalt fabrics) and another intra-ply composite containing Kevlar in the warp and basalt in the weft direction. Whereas in inter-ply hybrid composite, with Kevlar as the loading face attained higher stress, while composite with Basalt as the loading face attained higher strain. SEM micrographs revealed that Kevlar on the loading face can bear the impact with lesser delamination as compared to the Basalt on the loading face. Damage studies revealed that Kevlar fiber surface loading results in higher stress as compared to basalt (brittle) surface loading with lower overall damage.  相似文献   

7.
This paper investigates the characterization of in-plane shear properties of thermoplastic composites reinforced with Kevlar/basalt fabrics. Different fabrics had architectures of two dimensional plain woven (2D-P) and three dimensional angle-interlock (3D-A). Intralayer hybridization was performed during the weaving of the fabrics with the combination of Kevlar and basalt yarns. Five 2D-P and three 3D-A composite laminates were manufactured with polypropylene (PP) as a matrix, using compression molding. Iosipescu shear tests were carried out to evaluate the in-plane shear properties. The experimental results revealed that the shear properties including shear modulus, shear strength and shear failure strain of homogeneous composites were improved by 6.5–14.9%, 4.3–19.7%, and 3.2–46.7%, respectively. Similarly, change in the fabric architecture from 2D-P to 3D-A also enhanced the shear strength and shear failure strain by 32.0–41.6% and 7.2–22.5%, respectively. Intralayer hybrid composites had better in-plane shear properties than the interlayer hybrid composites. The fracture morphologies of the specimens were examined by scanning electron microscopy (SEM).  相似文献   

8.
Flax-PP based thermally bonded roving (TBR) has a unique structure where the flax fibres remain twist-free and fully aligned along the roving axis. The present study describes an experimental investigation on the low velocity impact (LVI) behaviour of the TBR based woven fabric composites and compares the same with plain woven glass fabric reinforced PP composites (GRPC). Two different fabric architectures namely plain woven (PW) and unidirectional (UD) are fabricated using flax/PP based TBR. These TBR based woven fabrics and the glass fabric/PP sheets are consolidated in a compression moulding machine and the resultant composite-laminates are tested for their LVI behaviour. The impact test results revealed that the glass/PP composites absorb more energy and exhibit a higher peak load than both TBR based PW and UD fabric composites. However, the specific load and energy of all flax/PP composites are higher than the glass/PP composite. The damage tolerance of all composite laminates are evaluated by comparing their flexural strength before and after the impact. It is observed that the proportionate loss in flexural strength due to impact thrust is larger in case of glass/PP composites than all flax-PP composites.  相似文献   

9.
Carbon nanomaterials such as carbon nanotubes (CNTs), graphene and their hybrid have been studied extensively. Despite having excellent properties of CNTs and graphene have not yet been fully realized in the polymer composites. During fabrication agglomeration of CNTs and restacking of graphene is a serious concern that results in the degradation of properties of nanomaterials into the final composites. To improve the dispersion of CNTs and restacking graphene, in the present research work, we focused on the hybridization of graphene oxide and CNTs. Multiwalled carbon nanotubes (MWCNTs), functionalized carbon nanotubes (FCNTs), and graphene oxide-carbon nanotubes (GCNTs) reinforced acrylonitrile butadiene styrene (ABS) composites were prepared separately by vacuum filtration followed by hot compression molding. Further, dynamic mechanical analysis (DMA), and electromagnetic interference (EMI) shielding properties of ABS composites reinforced carbon nanofillers were investigated. The dynamic mechanical properties of polymers strongly depend on the adhesion of fillers and polymer, entanglement density of polymer chains in the presence of carbon fillers. The dynamic mechanical characteristics such as storage, loss modulus, and damping factor of prepared composites were significantly affected by the incorporation of MWCNTs, FCNTs, and GCNTs. Maximum EMI shielding effectiveness of −49.6 dB was achieved for GCNT-ABS composites which were highest compared to MWCNTs-ABS composites (−38.6 dB) and FCNTs-ABS composites (−36.7 dB) in the Ku band (12.4–18 GHz). These results depict the great potential of GCNTs-ABS composites to be used in various applications of efficient heat dissipative EMI shielding materials for electronic devices.  相似文献   

10.
This paper presents an experimental investigation on the compression behavior of fiber‐reinforced sandwich composites. In this study, five different types of sandwich composites were prepared with warp knitted spacer fabric as middle layer. Four different types of woven Kevlar fabric structures were used as outer layers (skin) along with one sample of woven basalt fabric. The middle layer used is 100% polyester spacer fabric. Sandwich composites were fabricated using epoxy resin by wet lay‐up method under vacuum bagging technique. Compression behavior, ball burst, and knife penetration were tested for all samples. The effect of outer layer of these composites on the mechanical performance was studied using the compression stress‐strain curves. It is known that spacers have excellent compression elasticity and cushioning. Maximum knife penetration resistance is obtained with twill weave on surface because of maximum yarn cohesion and resin impregnation. Higher amount of cohesive friction results in higher resistance against penetration of sharp objects like the knife edge. Plain and twill fabrics offer sufficient resistance again ball burst. The yarn deformation allows formation of dome shape after ball impact. Maximum impact resistance in ball burst is obtained for plain weave because of highest level of interyarn binding. The results provide new understanding of knitted spacer fabric‐based sandwich composites under compression and impact loading condition.  相似文献   

11.
The mechanical properties of composite modified double base (CMDB) propellant significantly depend on the strain rate. In particular, the yield stress increases dramatically at higher strain rates. To study this behaviour, low, intermediate and high strain rate compression testing (1.7 × 10−4 to 4 × 103 s−1) of CMDB propellant at room temperature was conducted by using a universal testing machine, a hydraulic testing machine and a split Hopkinson pressure bar (SHPB) system, respectively. The yield stress was observed to increase bilinearly with the logarithm of strain rate, with a sharp increase in slope at a strain rate of 5 × 101 s−1, which was supported by dynamic mechanical analysis (DMA) testing. The Ree-Eyring model, involving two rate-activated processes, was employed to predict the yield behaviour of CMDB propellant over a wide range of strain rates. The predictions are in excellent agreement with the experimental data.  相似文献   

12.
A strong lightweight material (X-VOx) was formulated by nanocasting a conformal 4 nm thin layer of an isocyanate-derived polymer on the entangled worm-like skeletal framework of typical vanadia aerogels. The mechanical properties were characterized under both quasi-static loading conditions (dynamic mechanical analysis, compression and flexural bending testing) as well as high strain rate loading conditions using a split Hopkinson pressure bar (SHPB). The effects of mass density, moisture concentration and low temperature on the mechanical properties were determined and evaluated. Digital image correlation was used to measure the surface strains through analysis of images acquired by ultra-high speed photography, indicating nearly uniform compression at all stages of deformation during compression. The energy absorption of X-VOx was plotted as a function of the density, strain rate and temperature, and compared with that of plastic foams. X-VOx remains ductile even at ?180 °C, a characteristic not found in most materials. This unusual ductility is derived from interlocking and sintering-like fusion of nanoworms during compression. X-VOx emerges as an ideal material for force protection under impact.  相似文献   

13.
The functionalization of multi‐walled carbon nanotubes (MWNTs) was achieved by grafting furfuryl amine (FA) onto the surfaces of MWNTs. Furthermore, the functional MWNTs were incorporated into carbon fabric composites and the tribological properties of the resulting composites were investigated systematically on a model ring‐on‐block test rig. Friction and wear tests revealed that the modified MWNTs filled carbon fabric composite has the highest wear resistance under all different sliding conditions. Fourier transform infrared spectroscopy (FTIR), X‐ray photoelectron spectroscopy (XPS), and thermal gravimetric analysis (TGA) revealed that MWNTs were successfully functionalized and the modification led to an improvement in the dispersion of MWNTs, which played an important role on the enhanced tribological properties of carbon fabric composites. It can also be found that the friction and wear behavior of MWNTs filled carbon fabric composites are closely related with the sliding conditions such as sliding speed, load, and lubrication conditions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
The biomass carbon ratios of various polymer composites were studied. The biomass carbon ratios of polymer composites were estimated by the ratios of 14C to 12C measured by accelerator mass spectrometry (AMS) based on ASTM D 6866-08. The pretreatment conditions of the polymer composite of each constituent for the AMS measurement are described. The repeatability and accuracy of the biomass carbon ratio evaluation by AMS for the polymer composites with an inorganic filler, which are biomass-based plastics with mineral calcium carbonate and petroleum-based plastics with biobased calcium carbonate, such as shell powder or an organic filler, are discussed. The standard deviation of the polymer composite was less than 1%, and it was sufficiently lower compared with the limit of the AMS measurement (0.12%). Also, the biomass carbon ratio of each constituent of the polymer composite including the inorganic filler was significant based on the AMS measurement by changing the pretreatment conditions.  相似文献   

15.
Linear low density polyethylene (LLDPE) is the one of the most popular polymer used for rotational moulding applications such as storage tanks. But, its inferior mechanical properties and thermal stability restrict the longer service. Hence, this study experimentally demonstrates the effect of Halloysite Nanotube (HNTs) concentration on LLDPE composites for enhancing the mechanical and thermal stability. HNTs were uniformly dispersed with LLDPE matrix through ultra-sonication, followed by compression moulding used to prepare the nano composites plates. The prepared composites are shown 19.2% improved tensile strength for 2 wt% HNTs, whereas 28.9% hike in flexural strength observed for 4 wt% HNTs composite, compare to neat LLDPE. Which shows that higher concentrations of HNTs is favourable in improving the flexural strength rather than tensile properties. In addition to that, higher concentrations of HNTs are also helping in improving the storage modulus of the LLDPE composites. The increase in mechanical properties mainly attributed due to effective load carriers (HNTs) in the composite. Besides, HNTs were also contributing for improving the melting point and residual char of the composites, which is indeed for storage tanks durability. The prepared composite was thermally stable at higher temperature up to 230 °C, because of HNTs chemical structure, the inner layer of HNTs constitute with Al2O3 and outermost layer constitute with SiO2, both are thermally stable. Stated enhancement proves the potential effect of HNTs reinforcement in the LLDPE composite for rotational moulding applications.  相似文献   

16.
In situ monitoring of resin flow, impregnation of carbon fiber fabrics, and curing during composite manufacturing are very important for determining the quality of composite parts. In conventional methods, sensors, such as optical fibers and strain gages, are bonded to or embedded in the composites for measuring the changes in mechanical and chemical properties. Although they can detect resin curing behavior and impregnation of carbon fibers, they may adversely affect the manufacturing process or structural integrity of the composites. In this study, carbon fiber itself was used as a sensor that minimizes the degradation of mechanical properties and increases the efficiency of monitoring the manufacturing process. The change in the electrical resistance of carbon fiber fabrics was monitored during the various manufacturing processes when the resin flowed through the carbon fiber fabric and curing progressed. The effectiveness of this monitoring method was confirmed, and it is expected to be applicable in monitoring the quality of the finished composite parts.  相似文献   

17.
This work presents an experimental investigation into the effect of cornhusk fibre (CHF) content upon the mechanical properties, water absorption behaviour, and swellability of CHF/polyester (PE) composites used in water environments. The CHF/PE was prepared at different volume fractions using hot compression (~175 °C). To investigate the rate of water absorption and swellability behaviours, composites were immersed in water for varying durations. The mechanical properties of composites (i.e. tensile, bending and compression strengths) immersed in water were carefully evaluated. The results indicate that the composites with an increased CHF content and a longer immersion time are prone to lower mechanical properties. The large amount of water absorbed by the composite reduces the bonding interface between CHF and PE, which is responsible for the damage. Moreover, the amount of water absorbed and the swellability increase with a corresponding increase in the CHF content. The lowest water absorption (2.39%) was detected in 20% CHF and 80% PE composite immersed for 6 days. The findings gathered in this research endorse CHF/polyester thermoset composites as a viable alternative for construction applications.  相似文献   

18.
This work describes a simple and useful methodology based on electrical-mechanical data taken under dynamic conditions to evaluate the effectiveness of a conducting composite as a pressure sensor. This method utilizes the compression force applied by a universal testing machine and relates this value to the corresponding resistivity value given by an electrometer, using a computer program developed in our laboratory. The proposed methodology was employed on conducting composites constituted of polyaniline as the conducting filler dispersed into styrene-butadiene (SBS) block copolymer as the insulating polymer matrix. The compression sensitivity and the hysteresis of these materials were investigated.  相似文献   

19.
Ceramic fast-ion conductors have high ionic conductivities (>10?4 S cm?1) but are difficult to process and have poor chemo/mechanical properties at the electrode/electrolyte interfaces. In contrast, polymer electrolytes are pliable and easy to process but suffer from low room-temperature ionic conductivities (≈10?6-10?7 S cm?1). Combining these two elements to form a composite polymer electrolyte is a promising way to enable all-solid-state lithium-metal batteries. The choice of ceramic filler and polymer can be tailored to provide synergistic benefits that overcome the practical shortcomings of the two components. Herein, the fundamentals of Li+ conduction through the various phases and interfaces in these materials are discussed as well as the important parameters, beyond the initial choice of polymer and ceramic filler materials that must be considered while designing composite polymer electrolytes. Emphasis is placed on the particle filler engineering and practical fabrication methods as routes toward enhancing the properties of these composites.  相似文献   

20.
Transparent thin films of calcium‐ion‐incorporated polymer composites were synthesized with calcium carbonate (CaCO3) and polymers such as poly(acrylic acid) (PAA), poly(ethylene glycol) (PEG), and methylcellulose. The homogeneous distribution of Ca2+ in the composite films was observed because of the high concentration of COO? groups along the PAA backbone for the complexation of Ca2+ ions. The optical transparency of the composites depends on the weight percentages of the three polymers and the molar concentration of CaCO3 in the composites. Maximum transparency was obtained for a composite film with a PAA/CaCO3 ratio of 9:1. The results indicated that methylcellulose improved the film‐forming capabilities and that PEG improved the transparency of the composites. All polymer complexes were characterized with X‐ray diffraction, fourier transfer infrared spectroscopy, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, dynamic mechanical analysis, and optical transparency measurements. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4459–4465, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号