首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
《Comptes Rendus Chimie》2015,18(1):88-99
The performance of a microporous activated carbon prepared chemically from olive stones for removing Cu(II), Cd(II) and Pb(II) from single and binary aqueous solutions was investigated via the batch technique. The activated carbon sample was characterized using N2 adsorption–desorption isotherms, SEM, XRD, FTIR, and Boehm titration. The effect of initial pH and contact time were studied. Adsorption kinetic rates were found to be fast and kinetic experimental data fitted very well the pseudo-second-order equation. The adsorption isotherms fit the Redlich–Peterson model very well and maximum adsorption amounts of single metal ions solutions follow the trend Pb(II) > Cd(II) > Cu(II). The adsorption behavior of binary solution systems shows a relatively high affinity to Cu(II) at the activated carbon surface of the mixture with Cd(II) or Pb(II). An antagonistic competitive adsorption phenomenon was observed. Desorption experiments indicated that about 59.5% of Cu(II) and 23% of Cd(II) were desorbed using a diluted sulfuric acid solution.  相似文献   

2.
The environmental pollution due to the industrial wastewater of four different areas in the Gulf of Suez, Red Sea, Egypt, was studied. Adsorption capacities toward the concerned heavy metal ions Cu(II), Zn(II), Fe(II), and Pb(II) by multiwalled carbon nanotubes (MWCNTs) and modified-MWCNTs with 5,7-dinitro-8-quinolinol were investigated. MWCNTs as well as the modified-MWCNTs were characterized using Fourier transform infrared (FTIR), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). Adsorption of the studied divalent metal ions was measured by atomic absorption spectrometry (AAS). The effects of solution conditions such as pH, shaking time, metal ion concentration, ionic strength and adsorbent dosage on the adsorption process were also examined. The obtained results showed that removals of the heavy metal ions under consideration by MWCNTs are obviously dependent on the experimental conditions. The maximum adsorption capacities as calculated applying Langmuir equation to single ion adsorption isotherms were found to be 142.8 mg/g for Cu(II), 250 mg/g for Zn(II), 111.1 mg/g for Fe(II), and 200 mg/g for Pb(II) using MWCNTs; meanwhile, the modified-MWCNTs exhibited higher values of the respective maximum adsorption capacities as 333.3 mg/g for Cu(II), 500 mg/g for Zn(II), 200 mg/g for Fe(II), and 333.3 mg/g for Pb(II). Kinetic studies were also performed and the experimental data followed a pseudo-second order model of the adsorption process. The obtained results suggest that the tested adsorption systems of MWCNTs and modified-MWCNTs have suitable affinity toward the metal ion under consideration. Both systems could act as potentially applicable tool in environmental protection.  相似文献   

3.
The Freundlich and Langmuir isotherms were used to describe the biosorption of Cu(II), Pb(II), and Zn(II) onto the saltbush leaves biomass at 297 K and pH 5.0. The correlation coefficients (R2) obtained from the Freundlich model were 0.9798, 0.9575, and 0.9963 for Cu, Pb, and Zn, respectively, while for the Langmuir model the R2 values for the same metals were 0.0001, 0.1380, and 0.0088, respectively. This suggests that saltbush leaves biomass sorbed the three metals following the Freundlich model (R2 > 0.9575). The KF values obtained from the Freundlich model (175.5 · 10−2, 10.5 · 10−2, and 6.32 · 10−2 mol · g−1 for Pb, Zn, and Cu, respectively), suggest that the metal binding affinity was in the order Pb > Zn > Cu. The experimental values of the maximal adsorption capacities of saltbush leaves biomass were 0.13 · 10−2, 0.05 · 10−2, and 0.107 · 10−2 mol · g−1 for Pb, Zn, and Cu, respectively. The negative ΔG values for Pb and the positive values for Cu and Zn indicate that the Pb biosorption by saltbush biomass was a spontaneous process.  相似文献   

4.
Multi-walled carbon nanotubes (MWCNTs) were chemically functionalized by glutaric dihydrazide (GDH) and characterized with FT-IR technique. This new sorbent was used for enrichment and preconcentration of Co(II), Cd(II), Pb(II), and Pd(II) ions. The adsorption was achieved quantitatively on MWCNTs at pH 4.0, and then the retained metal ions on the adsorbent were eluted with 1.5 mol L?1 HNO3. The effects of analytical parameters including pH of the solution, eluent type, sample volume, and matrix ions were investigated for optimization of the presented procedure. The adsorption capacity of the adsorbent at optimum conditions was found to be 33.6, 29.2, 22.1, and 36.0 mg g?1 for Co(II), Cd(II), Pb(II), and Pd(II), respectively. The LOD values of the method were 0.16, 0.19, 0.17, and 0.12 ng mL?1 (3Sb, n = 10) for Co(II), Cd(II), Pb(II), and Pd(II), respectively. The RSDs values of the method were 0.75, 0.85, 1.16, and 1.30 ng mL?1 for Co(II), Cd(II), Pb(II), and Pd(II), respectively. The method was applied for the determination of analytes in soil, well water, and wastewater samples with satisfactory results.  相似文献   

5.
The present study reports the competitive adsorptive removal of cadmium (Cd(II)) and zinc (Zn(II)) ions from binary systems using rice husk ash (RHA), a waste obtained from the rice husk-fired furnaces, as an adsorbent. The initial pH (pH0) affects significantly the capacity of RHA for adsorbing the metallic ions in the aqueous solution. The pH0  6.0 is found to be the optimum for the removal of Cd(II) and Zn(II) ions by RHA. The single ion equilibrium adsorption from the binary solution is better represented by the non-competitive Redlich–Peterson (R–P) and the Freundlich models than by Langmuir model in the initial metal concentration range of 10–100 mg/l. The adsorption of Zn(II) ion is more than that of Cd(II) ion, and this trend is in agreement with the single-component adsorption data. The equilibrium metal removal decreases with increasing concentrations of the other metal ion and the combined effect of Cd(II) and Zn(II) ions on RHA is generally found to be antagonistic. Non-modified Langmuir, modified Langmuir, extended-Langmuir, extended-Freundlich, Sheindorf–Rebuhn–Sheintuch (SRS), non-modified R–P and modified R–P adsorption models were tested to find the most appropriate competitive adsorption isotherm for the binary adsorption of Cd(II) and Zn(II) ions onto RHA by minimizing the Marquardt's percent standard deviation (MPSD) error function. The extended-Freundlich model satisfactorily represents the adsorption equilibrium data of Cd(II) and Zn(II) ions onto RHA.  相似文献   

6.
The extraction and transport of Cd(II) and Pb(II) in two different membrane systems (SLM and PIM) using Kelex 100 as carrier was studied, proposing the corresponding chemical models of transport. A two-species transport model is proposed for Cd(II), according to solvent extraction (SX) data. Experimental SLM permeabilities are 9.7×10−5 m s−1, while measured PIM permeabilities are 5×10−5 m s−1. Values for the aqueous boundary layer thickness and for the diffusion coefficient of the metal cation-carrier complexes in the membrane phase were calculated from numerical fitting of experimental data using the proposed transport models. A highly selective Pb(II) separation was achieved in PIM systems based on the nature of the chemical equilibria involved in Cd(II) and Pb(II) membrane transport.  相似文献   

7.
This work introduces the feasibility of using sugar cane bagasse (SCB) – a sugar cane industry waste – as a selective solid phase extractor for Fe(III). The order of metal uptake capacities in μmol g?1 for the extraction of six tested metal ions from aqueous solution using static technique is Fe(III) > Cu(II) > Pb(II) > Zn(II) > Cd(II) > Co(II). Since SCB exhibits remarkable binding characteristics for Fe(III), special interest was devoted for optimizing its uptake and studying its selectivity properties under static and dynamic conditions. In this respect, batch experiments were carried out at the pH range 1.0–4.0, initial concentration of metal ion (10–100 μmol), weight of phase (25, 50, 75, 100, 125 and 150 mg) and shaking time (10, 30, 45, 60, 90, 120 and 150 min). FT-IR spectra of SCB before and after uptake of Fe(III) were recorded to explore the nature of the functional groups responsible for binding of Fe(III) onto the studied natural biosorbent. The equilibrium data were better fitted with Langmuir model (r2 = 0.985) than Freundlich model (r2 = 0.934). Moreover, Fe(III) sorption was fast and completed within 60 min. The adsorption kinetics data were best fitted with the pseudo-second-order type. As a view to find a suitable application of SCB based on its unique property as a benign sorbent, it was found that, Fe(III) spiked natural water samples such as doubly distilled water (DDW), drinking tap water (DTW), natural drinking water (NDW), ground water (GW) and Nile River water (NRW) was quantitatively recovered (>95.0%) using batch and column experiments, with no matrix interferences.  相似文献   

8.
In the present study a biomass derived from the leaves of Acacia nilotica was used as an adsorbent material for the removal of cadmium and lead from aqueous solution. The effect of various operating variables, viz., adsorbent dosage, contact time, pH and temperature on the removal of cadmium and lead has been studied. Maximum adsorption of cadmium and lead arises at a concentration of 2 g/50 ml and 3 g/50 ml and at a pH value of 5 and 4, respectively. The sorption data favored the pseudo-second-order kinetic model. Langmuir, Freundlich and Dubinin–Radushkevich (D–R) models were applied to describe the biosorption isotherm of the metal ions by A. nilotica biomass. Based on regression coefficient, the equilibrium data found were fitted well to the Langmuir equilibrium model than other models. Thermodynamic parameters such as free energy change (ΔG°), enthalpy change (ΔH°) and entropy change (ΔS°) have been calculated, respectively revealed the spontaneous, endothermic and feasible nature of adsorption process. The activation energy of the biosorption (Ea) was estimated as 9.34 kJ mol−1 for Pb and 3.47 kJ mol−1 for Cd from Arrhenius plot at different temperatures.  相似文献   

9.
Zirconium(IV) phosphosulphosalicylate, a cation exchanger was synthesized by mixing zirconium oxychloride to a mixture of 5-sulphosalicylic acid and phosphoric acid. The material showed good efficiency for the preparation of an ion-selective membrane electrode. The membrane was characterized affinity for Pb(II) ions. Due to its Pb(II) selective nature, the ion-exchanger was used as an electroactive by XRD and SEM analysis. The electrode responds to Pb(II) ions in a linear range from 1 × 10−5 to 1 × 10−1 M with a slope of 43.8 mV per decade change in concentration with detection limit of 4.78 × 10−6 M. The life span of electrode was found to be 90 days. The proposed electrode showed satisfactory performance over a pH range of 4.0–6.5, with a fast response time of 15 s. The sensor has been applied to the determination of Pb(II) ions in water samples of different origins. It has also been used as indicator electrode in potentiometric titration of Pb(II) ion with EDTA.  相似文献   

10.
The removal of heavy metals, such as Cu(II), Cd(II) and Cr(III) from aqueous solution was studied using Chorfa silt material (Mascara, Algeria). The main constituents of silt sediment are quartz, calcite and mixture of clays. The experimental data were described using Freundlich, Langmuir, Dubinin–Radushkevich (D–R) and Langmuir–Freundlich models. The adsorbed amounts of chromium and copper ions were very high (95% and 94% of the total concentration of the metal ions), whereas cadmium ion was adsorbed in smaller (55%) amounts. The Langmuir–Freundlich isotherm model was the best to describe the experimental data. The maximum sorption capacity was found to be 26.30, 11.76 and 0.35 mg/g for Cr3+, Cu2+ and Cd2+, respectively. The results of mean sorption energy, E (kJ/mol) calculated from D–R equation, confirmed that the adsorption of copper, chromium and cadmium on silt is physical in nature.  相似文献   

11.
A method for preconcentration of palladium at trace level on modified multiwalled carbon nanotubes columns and determination by flame atomic absorption spectrometry (FAAS) has been developed. Multiwalled carbon nanotubes (MWCNTs) were oxidized with concentrated HNO3 and the oxidized multiwalled carbon nanotubes were modified with 5-(4′-dimethylamino benzyliden)-rhodanine, and then were used as a solid sorbent for preconcentration of Pd(II) ions. Factors influencing sorption and desorption of Pd(II) ions were investigated. The sorption of Pd(II) ions was quantitative in the pH range of 1.0–4.5, whereas quantitative desorption occurs with 3.0 mL 0.4 mol L?1 thiourea. The amount of eluted palladium was measured using flame atomic absorption spectrometry. The effects of experimental parameters, including sample flow rate, eluent flow rate, and eluent concentration were investigated. The effect of coexisting ions showed no interference from most ions tested. The proposed method permitted a large enrichment factor (about 200). The relative standard deviation of the method was ±2.73% (for eight replicate determination of 2.0 μg mL?1 of Pd(II)) and the limit of detection was 0.3 ng mL?1. The method was applied to the determination of Pd(II) in water, road dust, and standard samples.  相似文献   

12.
Oxygen reduction reaction (ORR) in alkaline medium at iron (II) tetrakis (diaquaplatinum) octacarboxyphthalocyanine (PtFeOCPc) catalyst supported on multi-walled carbon nanotubes (MWCNTs) has been described. The ORR followed the direct 4-electron transfer process, with a very low onset potential (approximately zero volts vs. Ag|AgCl, saturated KCl) and at a kinetic rate constant, 2.78 × 10? 2 cm s? 1. The results clearly showed that the ORR activity at the MWCNT-PtFeOCPc platform is comparable or even better than recent reports with other electrocatalysts, thus a promising catalytic platform for cathodic process in fuel cell device.  相似文献   

13.
《中国化学快报》2020,31(10):2752-2756
Electrochemical analysis is a promising technique for detecting biotoxic and non-biodegradable heavy metals. This article proposes a novel composite electrode based on a polyaniline (PANi) framework doped with bismuth nanoparticle@graphene oxide multi-walled carbon nanotubes (Bi NPs@GO-MWCNTs) for the simultaneous detection of multiple heavy metal ions. Composite electrodes are prepared on screen-printed electrodes (SPCEs) using an efficient dispensing technique. We used a SM200SX-3A dispenser to load a laboratory-specific ink with optimized viscosity and adhesion to draw a pattern on the work area. The SPCE was used as substrate to facilitate cost-effective and more convenient real-time detection technology. Electrochemical techniques, such as cyclic voltammetry and differential pulse voltammetry, were used to demonstrate the sensing capabilities of the proposed sensor. The sensitivity, limit of detection, and linear range of the PANi-Bi NPs@GO-MWCNT electrode are 2.57 × 102 μA L μmol−1 cm−2, 0.01 nmol/L, and 0.01 nmol/L–5 mmol/L and 0.15 × 10−1 μA L μmol−1 cm−2, 0.5 nmol/L, and 0.5 nmol/L–5 mmol/L for mercury ion (Hg(II)) and copper ion (Cu(II)) detection, respectively. In addition, the electrode exhibits a good selectivity and repeatability for Hg(II) and Cu(II) sensing when tested in a complex heavy metal ion solution. The constructed electrode system exhibits a detection performance superior to similar methods and also increases the types of heavy metal ions that can be detected. Therefore, the proposed device can be used as an efficient sensor for the detection of multiple heavy metal ions in complex environments.  相似文献   

14.
The use of cyclic voltammetry (CV) and linear scan anodic stripping voltammetry (LSASV) to predict the selectivity of microfiltration ceramic membranes made from a lump of local clay towards Pb(II) ions filtration is described. The membranes were characterized by different techniques followed by CV analysis of the Fe(CN)63-/Fe(CN)64- redox couple and Pb(II) on bare graphite, raw clay, and clay-modified carbon paste electrode (clay-modified CPE). The effect of clay loading in the range of 1–10 % (w/w) on the electrodes is studied, where an enhanced peak current is observed for 5 % w/w clay. Moreover, a decrease in the peak current can be seen for bare graphite electrodes, suggesting that the clay mineral had played a substantial role in the sieving of heavy metal ions through the ceramic membrane. The electroactive surface area of 5% w/w raw clay towards Fe(II) ions was found to be in the order of 3.07 × 10-2 cm2 and higher than 5% w/w clay sintered to 1000 °C and bare graphite. CV analysis shows that both, 5 % w/w raw clay and 5 % w/w clay sintered to 1000 °C exhibited high peak currents towards Pb(II) ions. The mobility of the Pb(II) ions is found to increase when 5% w/w clay sintered to 1000 °C is utilized as membrane/electrode, leading to an increase in the amount of reduced Pb(II) ions on the surfaces of the clay membranes/electrodes. The study suggests successful filtration of Pb(II) ions through the proposed membrane/electrode and a much better accumulation than Fe(II) at the surface of the membrane/electrode before being subjected to filtration.  相似文献   

15.
This paper reports the interest of 4-carboxyphenyl-grafted screen-printed electrodes (4-CP-SPEs) for trace Cu(II) measurement in water samples. These novel sensors were easily prepared via electrochemically reduction of the corresponding diazonium salt. Detection of Cu(II) was then achieved by immersing the grafted electrode into the sample solution for 10 min, followed by the electrochemical measurement of accumulated metallic ions.The efficiency of the Cu(II) adsorption at the grafted layer was clearly demonstrated. 4-CP-SPEs were able to detect and quantify Cu(II) as low as 5 × 10?9 and 10?8 M in a large ionic strength range. Moreover, no major interference of Pb(II) in the determination of Cu(II) is expected in natural water. Electrodes were finally successfully applied for Cu(II) determination in tap water and in estuarine water demonstrating the convenience of such sensors for environmental analysis.  相似文献   

16.
The originality on the high efficiency of murexide modified halloysite nanotubes as a new adsorbent of solid phase extraction has been reported to preconcentrate and separate Pd(II) in solution samples. The new adsorbent was confirmed by Fourier transformed infrared spectra, X-ray diffraction, scanning electron microscope, transmission electron microscope and N2 adsorption–desorption isotherms. Effective preconcentration conditions of analyte were examined using column procedures prior to detection by inductively coupled plasma-optical emission spectrometry (ICP-OES). The effects of pH, the amount of adsorbent, the sample flow rate and volume, the elution condition and the interfering ions were optimized in detail. Under the optimized conditions, Pd(II) could be retained on the column at pH 1.0 and quantitatively eluted by 2.5 mL of 0.01 mol L?1 HCl–3% thiourea solution at a flow rate of 2.0 mL min?1. The analysis time was 5 min. An enrichment factor of 120 was accomplished. Common interfering ions did not interfere in both separation and determination. The maximum adsorption capacity of the adsorbent at optimum conditions was found to be 42.86 mg g?1 for Pd(II).The detection limit (3σ) of the method was 0.29 ng mL?1, and the relative standard deviation (RSD) was 3.1% (n = 11). The method was validated using certified reference material, and has been applied for the determination of trace Pd(II) in actual samples with satisfactory results.  相似文献   

17.
《Comptes Rendus Chimie》2014,17(7-8):849-859
Polyacrylamide (PAAm) was chemically modified with hydroquinone (HQ) via a homolytic route. A degree of modification of approximately 58% was obtained under optimal reaction conditions: time of 6 h, and [modifier]/[acrylamide] molar ratio of 5. PAAm and its modified form HQ–PAAm were characterized by UV–visible spectroscopy, FT–IR spectroscopy, 13C NMR spectroscopy, DSC, TGA, XRD, and SEM. A relatively lower molecular weight of the corresponding hydroquinone-functionalized form was measured. The glass transition temperature of the modified polymeric material was lower than that of the pristine one: 78.82 °C for HQ–PAAm versus 161.19 °C for PAAm. A study of Cu(II) adsorption by the cross-linked PAAm and HQ–PAAm resins was conducted by varying the following parameters: pH, time, temperature, ionic strength, sorbent mass, and initial Cu(II) concentration. The adsorption capacity of Pb(II) and Cd(II) by the different resins and their corresponding extents of desorption were estimated. The optimal conditions for metal ion uptake by polyacrylamide and its modified resin were: pH = 5.4, time = 120 min, temperature = 45 °C. The sorption extent by the modified resin was in the order Pb(II) > Cu(II) > Cd(II). The desorption of the experimented metallic ions from the resins exceeded 97%. A new way of cross-linking PAAm and its modified form is described herein.  相似文献   

18.
A novel composite adsorbent, silica aerogel activated carbon was synthesized by sol-gel process at ambient pressure drying method. The composite was characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and Nitrogen adsorption/desorption isotherms (BET).In the present study, the mentioned adsorbent was used moderately for the removal of cadmium ions from aqueous solutions and was compared with two other adsorbents of cadmium, activated carbon and silica aerogel. The experiments of Cd adsorption by adsorbents were performed at different initial ion concentrations, pH of the solution, adsorption temperature, adsorbent dosage and contact time. Moreover, the optimum pH for the adsorption was found to be 6.0 with the corresponding adsorbent dosage level of 0.1 g at 60 °C temperature. Subsequently, the equilibrium was achieved for Cd with 120 min of contact time.Consequently, the results show that using this composite adsorbent could remove more than 60% of Cd under optimum experimental conditions. Langmuir and Freundlich isotherm model was applied to analyze the data, in which the adsorption equilibrium data were correlated well with the Freundlich isotherm model and the equilibrium adsorption capacity (qe) was found to be 0.384 mg/g in the 3 mg/L solution of cadmium.  相似文献   

19.
Enzymatic amperometric procedures for measurement of Hg (II), based on the inhibitive action of this metal on urease enzyme activity, were developed. Screen-printed carbon electrodes (SPCEs) and gold nanoparticles modified screen-printed carbon electrodes (AuNPs/SPCEs) were used as supports for the cross-linking inmobilization of the enzyme urease. The amperometric response of urea was affected by the presence of Hg (II) ions which caused a decreasing in the current intensity. The optimum working conditions were found using experimental design methodology. Under these conditions, repeatability and reproducibility for both types of biosensors were determined, reaching values below 6% in terms of residual standard deviation. The detection limit obtained for Hg (II) was 4.2 × 10?6 M for urease/SPCE biosensor and 5.6 × 10?8 M for urease/AuNPs/SPCE biosensor. Analysis of the possible effect of the presence of foreign ions in the solution was performed. The method was applied to determine levels of Hg (II) in spiked human plasma samples.  相似文献   

20.
Three low-cost adsorbents (purified raw attapulgite (A-ATP), high-temperature-calcined attapulgite (T-ATP), and hydrothermal loading of MgO (MgO-ATP)) were prepared as adsorbents for the removal of Cd(II) and Pb(II). By evaluating the effect of the initial solution pH, contact time, initial solution concentration, temperature and coexistence of metal ions on Cd(II) and Pb(II) adsorption, the experimental results showed that MgO-ATP was successfully prepared by hydrothermal reaction and calcination as well as appearing to be a promising excellent adsorbent. At an initial pH of 5.0, A-ATP, T-ATP and MgO-ATP reached maximum adsorption amounts of 43.5, 53.9 and 127.6 mg/g for Pb(II) and 10.9, 11.2, and 25.3 mg/g for Cd(II) at 298 K, respectively. The Cd(II) adsorption on A-ATP was fitted by the Freundlich model, while the adsorption of Pb(II) and Cd(II) on T-ATP and MgO-ATP as well as Pb(II) adsorption on A-ATP agreed with the Langmuir model. All kinetic experimental data favored pseudo second-order model. The calculated thermodynamic parameters suggested that Pb(II) adsorption onto MgO-ATP was spontaneous and exothermic. When considering foreign metal ions, the three adsorbents all presented preferential adsorption for Pb (II). Chemical adsorption had a high contribution to the removal of Cd(II) and Pb(II) by modified attapulgite. In summary, the adsorption was greatly enhanced by the hydrothermal loading of MgO. It aimed to provide insights into the MgO-ATP, which could be able to efficiently remove Cd(II) and Pb(II) and serve as an economic and promising adsorbent for heavy metal-contaminated environmental remediation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号