首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 808 毫秒
1.
Zirconium(IV) phosphosulphosalicylate, a cation exchanger was synthesized by mixing zirconium oxychloride to a mixture of 5-sulphosalicylic acid and phosphoric acid. The material showed good efficiency for the preparation of an ion-selective membrane electrode. The membrane was characterized affinity for Pb(II) ions. Due to its Pb(II) selective nature, the ion-exchanger was used as an electroactive by XRD and SEM analysis. The electrode responds to Pb(II) ions in a linear range from 1 × 10−5 to 1 × 10−1 M with a slope of 43.8 mV per decade change in concentration with detection limit of 4.78 × 10−6 M. The life span of electrode was found to be 90 days. The proposed electrode showed satisfactory performance over a pH range of 4.0–6.5, with a fast response time of 15 s. The sensor has been applied to the determination of Pb(II) ions in water samples of different origins. It has also been used as indicator electrode in potentiometric titration of Pb(II) ion with EDTA.  相似文献   

2.
A carbon paste electrode bulk-modified with a functionalised macroporous resin is described as a voltammetric sensor for Pb(II) ions. The commercially available product, QuadraPure™TU, admixed into the paste at a ratio of 30% (v/v), contains thiourea residues that act as a highly effective functional group for chelating Pb(II). By combining with square-wave anodic voltammetry and “open-circuit” accumulation, the stripping peak of lead in 0.1 M acetate buffer could be calibrated over a wide concentration range of 0.005–5 mg l−1 Pb, with possible extension up to 25 mg l−1, when the signal of interest was not seriously affected by the presence of other common metals. Applicability of the sensor in practical analysis has been tested on selected water samples or a certified reference material and the respective results agreed well to those obtained by ICP-MS and to the content declared.  相似文献   

3.
A novel in-situ prepared copper film electrode (CuFE) for anodic stripping voltammetric measurement of trace levels of Hg(II) and Pb(II) is presented. The optimal electroanalytical performance of the CuFE was achieved in electrolyte solution comprising 0.1 M HCl and 0.4 M NaCl. The CuFE exhibited excellent operation in the presence of dissolved oxygen with calculated LoD of 0.1 μg L 1 Hg(II) and 0.06 μg L 1 Pb(II) in combination with 300 s accumulation time, repeatability with RSD of 4.5% for Hg(II) and 0.9% for Pb(II) (n = 12), and favourable linear response in the examined concentration range of 10–100 μg L 1 (R2 = 0.997) for Hg and 5–70 μg L 1 (R2 = 0.999) for Pb after 120 s accumulation. The electrode enabled also simultaneous detection of both investigated metal ions and revealed promising electroanalytical characteristics similar to or in certain cases surpassing those of commonly used gold electrodes.  相似文献   

4.
Trace analysis of thallium at surface modified thick-film graphite electrode with Bi nanopowder has been carried out using square-wave anodic stripping voltammetry (SWASV) technique. The Bi nanopowder electrode exhibited a well-defined response relating to the oxidation of Tl. From the linear relationship between Tl concentration and peak current, the sensitivity of the Bi nanopowder electrode was quantitatively estimated. The detection limit of Tl was determined to be 0.03 μg/L for 1.0 μg/L Tl solution under 10 min accumulation, which is lower than the reported values for a Bi film electrode. Furthermore, it is confirmed that EDTA addition effectively eliminates the Pb and Cd interferences in the course of Tl determination by forming complexes with Pb2+ and Cd2+.  相似文献   

5.
《Comptes Rendus Chimie》2014,17(5):465-476
A novel modified multiwall carbon nanotubes paste electrode with sodium dodecyl sulfate as a surfactant (SDS) has been fabricated through an electrochemical oxidation procedure and was used to electrochemically detect dopamine (DA), ascorbic acid (AA), uric acid (UA), and their mixture by cyclic voltammetry (CV) and differential voltammetry (DPV) methods. Several factors affecting the electrocatalytic activity of the hybrid material, such as the effect of pH, of the scan rate and of the concentration were studied. The bare carbon nanotubes paste electrode (BCNTPE) and SDS-modified carbon nanotubes paste electrode (SDSMCNTPE) were characterized using Field Emission Scanning Electron Microscopy (FESEM) and Energy-Dispersive X-ray spectroscopy (EDX). Using the CV procedure, a linear analytical curve was observed in the 1 × 10−6–2.8 × 10−5 M range with a detection limit at 3.3 × 10−7 M in pH 6.5, 0.2 M phosphate buffer solutions (PBS).  相似文献   

6.
This work introduces the feasibility of using sugar cane bagasse (SCB) – a sugar cane industry waste – as a selective solid phase extractor for Fe(III). The order of metal uptake capacities in μmol g?1 for the extraction of six tested metal ions from aqueous solution using static technique is Fe(III) > Cu(II) > Pb(II) > Zn(II) > Cd(II) > Co(II). Since SCB exhibits remarkable binding characteristics for Fe(III), special interest was devoted for optimizing its uptake and studying its selectivity properties under static and dynamic conditions. In this respect, batch experiments were carried out at the pH range 1.0–4.0, initial concentration of metal ion (10–100 μmol), weight of phase (25, 50, 75, 100, 125 and 150 mg) and shaking time (10, 30, 45, 60, 90, 120 and 150 min). FT-IR spectra of SCB before and after uptake of Fe(III) were recorded to explore the nature of the functional groups responsible for binding of Fe(III) onto the studied natural biosorbent. The equilibrium data were better fitted with Langmuir model (r2 = 0.985) than Freundlich model (r2 = 0.934). Moreover, Fe(III) sorption was fast and completed within 60 min. The adsorption kinetics data were best fitted with the pseudo-second-order type. As a view to find a suitable application of SCB based on its unique property as a benign sorbent, it was found that, Fe(III) spiked natural water samples such as doubly distilled water (DDW), drinking tap water (DTW), natural drinking water (NDW), ground water (GW) and Nile River water (NRW) was quantitatively recovered (>95.0%) using batch and column experiments, with no matrix interferences.  相似文献   

7.
The environmental pollution due to the industrial wastewater of four different areas in the Gulf of Suez, Red Sea, Egypt, was studied. Adsorption capacities toward the concerned heavy metal ions Cu(II), Zn(II), Fe(II), and Pb(II) by multiwalled carbon nanotubes (MWCNTs) and modified-MWCNTs with 5,7-dinitro-8-quinolinol were investigated. MWCNTs as well as the modified-MWCNTs were characterized using Fourier transform infrared (FTIR), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). Adsorption of the studied divalent metal ions was measured by atomic absorption spectrometry (AAS). The effects of solution conditions such as pH, shaking time, metal ion concentration, ionic strength and adsorbent dosage on the adsorption process were also examined. The obtained results showed that removals of the heavy metal ions under consideration by MWCNTs are obviously dependent on the experimental conditions. The maximum adsorption capacities as calculated applying Langmuir equation to single ion adsorption isotherms were found to be 142.8 mg/g for Cu(II), 250 mg/g for Zn(II), 111.1 mg/g for Fe(II), and 200 mg/g for Pb(II) using MWCNTs; meanwhile, the modified-MWCNTs exhibited higher values of the respective maximum adsorption capacities as 333.3 mg/g for Cu(II), 500 mg/g for Zn(II), 200 mg/g for Fe(II), and 333.3 mg/g for Pb(II). Kinetic studies were also performed and the experimental data followed a pseudo-second order model of the adsorption process. The obtained results suggest that the tested adsorption systems of MWCNTs and modified-MWCNTs have suitable affinity toward the metal ion under consideration. Both systems could act as potentially applicable tool in environmental protection.  相似文献   

8.
Early stages of the solid electrolyte interphase (SEI) formation at a tin foil electrode in an ethylene carbonate (EC) based electrolyte were investigated by in situ AFM and cyclic voltammetry (CV) at potentials >0.7 V, i.e., above the potential of Sn–Li alloying. We detected and observed initial steps of the surface film formation at ~2.8 V vs. Li/Li+ followed by gradual film morphology changes at potentials 0.7 < U < 2.5 V. The SEI layer undergoes continuous reformation during the following CV cycles between 0.7 and 2.5 V. The surface film on Sn does not effectively prevent the electrolyte reduction and a large fraction of the reaction products dissolve in the electrolyte. The unstable SEI layer on Sn in EC-based electrolytes may compromise the use of tin-based anodes in Li-ion battery systems unless the interfacial chemistry of the electrode and/or electrolyte is modified.  相似文献   

9.
The behavior of a modified carbon platinum electrode (Pt) for lead(II) determination by square wave voltammetry (SWV) was studied. The modified electrode is obtained by electrodeposition of hydroxyapatite (HAP) on the surface of a bare platinum electrode. The new electrode (HAP/Pt) revealed interesting electroanalytical detection of lead(II) based on the adsorption of this metal onto hydroxyapatite under open circuit conditions. After optimization of the experimental and voltammetric conditions, the best voltammetric responses-current intensity and voltammetric profile were obtained in 0.2 mol L?1 KNO3 with: 30 min accumulation time, 5 mV pulse amplitude and 1 mV s?1 scan rate. The observed detection (DL, 3σ) and quantification (DL, 10σ) limits in pure water were 2.01 × 10?8 and 6.7 × 10?7 mol L?1, respectively. The reproducibility of the proposed method was determined from five different measurements in a solution containing 2.2 × 10?6 mol L?1 lead(II) with a coefficients of variation of 2.08%.The electrochemical of hydroxyapatite at platinum surfaces was characterized, after calcinations 900 °C, by X-ray diffraction, infrared spectroscopy, chemical and electrochemical analysis.  相似文献   

10.
Bilayer lipid membrane (BLM) was self-assembled on a uniquely fabricated hydrophilic surface, containing N atoms from the carbon source of ethylene amine, of the multi-walled carbon nanotubes (MWNTs) to form the BLM/MWNTs nanocomposites. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and photoelectric experiments were taken to study the properties of the BLM/MWNTs nanocomposites. The thickness of the BLM, which was calculated from the CV data obtained at BLM/MWNTs electrode, turned out to be 4.38 nm, suggesting that the lipid self-assembled at the nanotubes surface was consistent with a bilayer structure. C60-incorporated BLM could also be self-assembled at the nanotubes surface (C60-BLM/MWNTs). The formation of BLM on the MWNTs surface blocked the diffusion of [Fe(CN)6]3/4− redox ions across BLM to the MWNTs electrode as no redox current was observed by CV measurement, whereas the incorporation of the electron mediator, C60, resumed a pair of redox peaks at C60-BLMs/MWNTs electrode. Moreover, the incorporation of C60 led to a four order of magnitude reduction of the resistance of C60-BLM/MWNTs (369.3 Ω) than that of BLM/MWNTs (3.238 × 106 Ω). MWNTs electrode exhibited an intrinsic cathodic photocurrent (166 μA cm−2) while BLM/MWNTs electrode blocked photocurrent response of the MWNTs. Interestingly, C60-BLM/MWNTs electrode resumed partial photoelectric properties (photo current: 65 μA cm−2) due to the electron mediation effect of C60 incorporated into the lipid membrane. As a result, the novel self-assembled BLM/MWNTs nanocomposites provided a simple yet useful model to study the C60-mediated photoelectric properties of the BLM/MWNTs which may be applicable to develop new biosensors and molecular devices.  相似文献   

11.
The role of surface oxygen groups on the kinetics of the V(II) oxidation reaction was studied on modified glassy carbon (GC) electrodes by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The reaction was found to be sensitive to the presence of oxygen groups on the electrode surface. Higher O/C ratios determined by X-ray photoelectron spectroscopy (XPS) corresponded to higher reactivities and lower charge transfer resistances measured in a 1 M V(II) electrolyte. The stability of an oxidised GC surface was also investigated in a 1 M V(II) electrolyte by potential holding and cycling experiments. It was found that after holding and cycling to successively more negative potentials up to − 0.8 V/RHE, the electrode surface lost its initial reactivity.  相似文献   

12.
The electroreduction of nitrate in synthetic seawater was investigated by cyclic voltammetry (CV) at a bare gold electrode modified by electrodeposited silver nanoparticles (AgNPs). The AgNPs were generated by chronoamperometry using a charge, Q, lower than the theoretical one corresponding to a silver monolayer. In these conditions, a linear range for nitrate determination is obtained from 10·10-6 mol L-1 to 10·10-3 mol L-1. Such a low limit of detection was achieved due to the combination of two chemical reactions coupled with electron transfer.  相似文献   

13.
The electrochemical reduction of molecular oxygen (O2) has been performed at gold electrodes modified with a submonolayer of a self-assembly (sub-SAM/Au) of a thiol compound (typically cysteine (CYST)) in O2-saturated 0.5 M KOH. At bare gold electrode O2 reduction reaction proceeds irreversibly, while this reaction is totally hindered at gold electrodes with a compact structure of CYST over its surface. The partial reductive desorption of the compact CYST monolayer was achieved by controlling the potential of the CYST/Au electrode, leading to the formation of a submonolayer coverage of the thiol compound over the Au electrode surface (sub-SAM/Au), at which the CYST molecules selectively block the Au(1 0 0) and Au(1 1 0) fractions (the so-called rough domains) of the polycrystalline Au while the Au(1 1 1) component (the so-called smooth domains) remains bare (i.e., uncovered with CYST). This sub-SAM/Au electrode extraordinarily exhibits a quasi-reversible two-electron reduction of molecular oxygen (O2) in alkaline medium with a peak separation (ΔEp) between the cathodic and anodic peak potentials (Epc,Epa) of about 60 mV. The ratio of the anodic current to the cathodic one is close to unity. The formal potential (Eo) of this reaction is found to equal −150 mV vs. Ag/AgCl/KCl(sat.).  相似文献   

14.
This work reports the development of screen-printed quantum dots (QDs)-based DNA biosensors utilizing graphite electrodes with embedded bismuth citrate as a bismuth precursor. The sensor surface serves both as a support for the immobilization of the oligonucleotide and as an ultrasensitive voltammetric QDs transducer relying on bismuth nanoparticles. The utility of this biosensor is demonstrated for the detection of the C634R mutation through hybridization of the biotin-tagged target oligonucleotide with a surface-confined capture complementary probe and subsequent reaction with streptavidin-conjugated PbS QDs. The electrochemical transduction step involved anodic stripping voltammetric determination of the Pb(II) released after acidic dissolution of the QDs. Simultaneously with the electrolytic accumulation of Pb on the sensor surface, the embedded bismuth citrate was converted in situ to bismuth nanoparticles enabling ultra-trace Pb determination. The biosensor showed a linear relationship of the Pb(II) peak current with respect to the logarithm of the target DNA concentrations from 0.1 pmol L 1 to 10 nmol L 1, and the limit of detection was 0.03 pmol L 1. The biosensor exhibited effective discrimination between a single-base mismatched sequence and the fully complementary target DNA. These “green” biosensors are inexpensive, lend themselves to easy mass production, and hold promise for ultrasensitive bioassay formats.  相似文献   

15.
《Comptes Rendus Chimie》2014,17(7-8):849-859
Polyacrylamide (PAAm) was chemically modified with hydroquinone (HQ) via a homolytic route. A degree of modification of approximately 58% was obtained under optimal reaction conditions: time of 6 h, and [modifier]/[acrylamide] molar ratio of 5. PAAm and its modified form HQ–PAAm were characterized by UV–visible spectroscopy, FT–IR spectroscopy, 13C NMR spectroscopy, DSC, TGA, XRD, and SEM. A relatively lower molecular weight of the corresponding hydroquinone-functionalized form was measured. The glass transition temperature of the modified polymeric material was lower than that of the pristine one: 78.82 °C for HQ–PAAm versus 161.19 °C for PAAm. A study of Cu(II) adsorption by the cross-linked PAAm and HQ–PAAm resins was conducted by varying the following parameters: pH, time, temperature, ionic strength, sorbent mass, and initial Cu(II) concentration. The adsorption capacity of Pb(II) and Cd(II) by the different resins and their corresponding extents of desorption were estimated. The optimal conditions for metal ion uptake by polyacrylamide and its modified resin were: pH = 5.4, time = 120 min, temperature = 45 °C. The sorption extent by the modified resin was in the order Pb(II) > Cu(II) > Cd(II). The desorption of the experimented metallic ions from the resins exceeded 97%. A new way of cross-linking PAAm and its modified form is described herein.  相似文献   

16.
A new simple method for the spectrophotometric determination of Pb(II) in fly ash leachates was developed. These leachates tend to contain a large amount of Ca(II) and Zn(II); this interferes with spectrophotometric determination of Pb(II) when conventional colorimetric agents are used. A copolymer consisting of protoporphyrin IX disodium salt and acrylamide was synthesized as a colorimetric agent. A measuring reagent containing ethylenediamine-N,N′-dipropionic acid (EDDP) as a masking agent for Zn(II) and an appropriate amount of Ca(II) together with the copolymer was applied to determine Pb(II). The temporal change in the absorption spectrum of the measuring reagent was acquired with a newly developed portable spectrophotometer for this method. The composition of EDDP and Ca(II) in the measuring reagent was optimized to measure leachates contaminated with Ca(II) and Zn(II). The detection limit and relative standard deviation of Pb(II) measured using the optimized method were 0.05 mg L?1 and 2.3%, respectively. The tolerance limits for Ca(II) and Zn(II) contaminants, where errors of less than 10% were allowed at a concentration of 0.5 mg L?1 Pb(II), were 4000 and 4 mg L?1, respectively. The determination of Pb(II) in various samples of actual leachates from incinerator fly ash was examined with this method. The obtained values correlated well with those obtained by flame atomic absorption spectroscopy.  相似文献   

17.
This paper reports the interest of 4-carboxyphenyl-grafted screen-printed electrodes (4-CP-SPEs) for trace Cu(II) measurement in water samples. These novel sensors were easily prepared via electrochemically reduction of the corresponding diazonium salt. Detection of Cu(II) was then achieved by immersing the grafted electrode into the sample solution for 10 min, followed by the electrochemical measurement of accumulated metallic ions.The efficiency of the Cu(II) adsorption at the grafted layer was clearly demonstrated. 4-CP-SPEs were able to detect and quantify Cu(II) as low as 5 × 10?9 and 10?8 M in a large ionic strength range. Moreover, no major interference of Pb(II) in the determination of Cu(II) is expected in natural water. Electrodes were finally successfully applied for Cu(II) determination in tap water and in estuarine water demonstrating the convenience of such sensors for environmental analysis.  相似文献   

18.
Multi-walled carbon nanotubes (MWCNTs) were used successfully for the removal of heavy metals from aqueous solution. Characterization techniques showed the carbon as nanotubes with an average diameter between 40 and 60 nm and a specific surface area of 61.5 m2 g?1. The effect of carbon nanotubes mass, contact time, metal ions concentration, solution pH, and ionic strength on the adsorption of Cu(II), Pb(II), Cd(II) and Zn(II) by MWCNTs were studied and optimized. The adsorption of the heavy metals from aqueous solution by MWCNTs was studied kinetically using different kinetic models. A pseudo-second order model and the Elovich model were found to be in good agreement with the experimental data. The mechanism of adsorption was studied by the intra-particle diffusion model, and the results showed that intra-particle diffusion was not the slowest of the rate processes that determined the overall order. This model also revealed that the interaction of the metal ions with the MWCNTs surface might have been the most significant rate process. There was a competition among the metal ions for binding of the active sites present on the MWCNTs surface with affinity in the following order: Cu(II) > Zn(II) > Pb(II) > Cd(II).  相似文献   

19.
Manganese(II) complex of (E)-2-(hydroxyl-5-methoxybenzylideneamino) phenol was synthesized and used as a suitable Mn(II) – selective membrane in PVC matrix. The plasticized membrane sensor exhibits a nersian response for Mn(II) ions over a wide concentration range of 6 × 10?6–2 × 10?2 M with slope of 29 ± 1 mV per decade. It has a response time of <11 s and can be used for 2 months without any measurable divergence in potential. The response of the proposed sensor is independent of pH between 4 and 9.5. The proposed sensor shows a fairly good discriminating ability towards Mn(II) in comparison with some hard and soft metals. The electrode was used in the determination of Mn(II) in aqueous solutions and as an indicator electrode in potentiometer titration of manganese ions against EDTA.  相似文献   

20.
Electrochemical deposition of PbTe from 50 mM Pb(NO3)2 + 1 mM TeO2 + 0.1 M HNO3 solution onto n-Si(1 0 0) wafers was studied using cyclic voltammetry (CV), chronoamperometry, ex situ SEM, XRD and EDX. Electrochemical behavior of n-Si(1 0 0) electrode in electrolytes 50 mM Pb(NO3)2 + 0.1 M HNO3 and 1 mM TeO2 + 0.1 M HNO3 was also studied. No underpotential deposition (UPD) of Pb and Te onto n-Si was observed in the investigated systems indicating weak Pb–Si and Te–Si interactions. Deposition of Pb and Te on n-Si occurred with overvoltage via 3D island growth. Electrosynthesis of PbTe (NaCl-like structure, a = 0.650 nm) takes place due to codeposition of Pb and Te at potentials E > EPb2+/Pb0 (lead UPD onto tellurium). Cathodic deposition of PbTe onto n-Si(1 0 0) is irreversible – there is no anodic current in the CV curve. Oxidation of PbTe on n-Si is observed only under illumination, when photoelectrons and photoholes are generated in silicon substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号