首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 195 毫秒
1.
We describe the layer-by-layer (LBL) fabrication of multilayer films and photovoltaic cells using poly(phenylene ethynylene)-based anionic conjugated polyelectrolytes as electron donors and water-soluble cationic fullerene C60 derivatives as acceptors. LBL film deposition was found to be linearly related to the number of bilayers as monitored by UV-vis absorption. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) of the multilayer films revealed an aggregated but relatively uniform morphology devoid of any long-range phase separation. The maximum incident monochromatic photon to current conversion efficiency (IPCE) of the photovoltaic cells was 5.5%, the highest efficiency reported to date for cells fabricated by using the LBL fabrication technique, and since the thin film cells do not provide complete absorption of the incident light, the current generation per photon absorbed may be as much as 10%. The cells exhibited open circuit voltages of 200-250 mV with highest measured short circuit currents up to 0.5 mA/cm2 and fill factors around 30%. The power conversion efficiencies measured at AM 1.5 solar conditions (100 mW/cm2) varied between 0.01 and 0.04%, and similar to the IPCE results, the efficiency is a function of the thickness of the PV active layer.  相似文献   

2.
A long-term stable Pt counter electrode modified by POM-based multilayer film has been fabricated by the electrochemical deposition method, which can markedly increase short-circuit photocurrent, open-circuit voltage and the conversion efficiency when used in dye-sensitized solar cells (DSSCs).  相似文献   

3.
Poly(p-phenylenevinylene)s with amines and pentafluorophenyl esters on side chains were synthesized and assembled on solid substrates by sequential layer-by-layer (LBL) deposition. This approach enables the creation of robust multilayer thin films via in-situ covalent coupling reactions between successive layers. The buildup of the multilayers was followed by UV/vis absorption spectroscopy and ellipsometry. The observed complex assembly behavior suggests that both covalent and hydrogen-bonding interactions are involved in the formation of multilayer films. The organized structure and surface morphology of resultant multilayers were investigated by reflectance Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. This covalent LBL method was further applied to generate conjugated polymer micropatterns using microstamped self-assembled monolayers as templates.  相似文献   

4.
Multilayer polymer films composed of a ruthenium terpyridine complex containing poly(p-phenylenevinylene) (Ru-PPV) and sulfonated polyaniline (SPAN) were prepared by a layer-by-layer electrostatic self-assembly deposition. The deposition process was carried out from SPAN solution in water and Ru-PPV in dimethylformamide (DMF). Optical-quality multilayer thin films were obtained. The film growth process was monitored by quartz crystal microbalance, and the surface morphology of the films was studied by atomic force microscopy. It was found that the properties of the multilayer films were dependent on deposition conditions such as the pH of the SPAN solution, the presence of salt in the polymer solutions, and the post-film-forming thermal annealing process. Cross-section transmission electron microscopic images suggested that there was no stratified structure formed in the multilayer films. Photovoltaic cells were fabricated by sandwiching the multilayer films between indium-tin-oxide and aluminum electrodes. The device performances were examined by illumination with AM 1.5 simulated solar light. The power conversion efficiencies of these devices were on the order of 10(-3)%. The maximum incident photon-to-electron conversion efficiency (IPCE) of the devices was found to be approximately 2% at 510 nm, which is consistent with the absorption maximum of the ruthenium complex. This indicates that the photosensitization process is due to the electronic excitation of the ruthenium complex.  相似文献   

5.
利用静电吸附自组装技术将酸化处理后的单壁碳纳米管(SWNTs)与超支化重氮盐(DAS)组装成多层膜.利用紫外光谱、椭偏仪、原子力显微镜、扫描电镜、拉曼光谱等对自组装膜的生长过程、膜厚增长、自组装膜表面形貌以及纳米管在膜中的存在状态等进行了检测,并利用纳米压痕仪测试了自组装膜的硬度和弹性模量.研究结果表明,SWNTs与DAS不仅发生了静电吸附,而且还发生了化学交联.同时碳纳米管均匀分散在自组装膜中.这两种因素的共同作用使得自组装膜表现出良好的纳米力学性能,硬度达到2.0GPa左右,弹性模量达到10.0GPa左右,而且可以从基底上剥离下来成为独立支撑膜.  相似文献   

6.
利用A2/B3单体通过重氮偶合反应制备了超支化偶氮聚合物.利用核磁共振、红外光谱、紫外光谱和DSC热分析手段表征了聚合物的结构、光谱性能和玻璃化转变温度.合成的超支化偶氮聚合物具有很好的光响应性能,用488nm Ar+激光对超支化偶氮聚合物薄膜进行光加工,得到了规则的表面起伏光栅.  相似文献   

7.
We report the development of a solid polymer electrolyte film from hydrogen bonding layer-by-layer (LBL) assembly that outperforms previously reported LBL assembled films and approaches battery integration capability. Films were fabricated by alternating deposition of poly(ethylene oxide) (PEO) and poly(acrylic acid) (PAA) layers from aqueous solutions. Film quality benefits from increasing PEO molecular weight even into the 10(6) range due to the intrinsically low PEO/PAA cross-link density. Assembly is disrupted at pH near the PAA ionization onset, and a potential mechanism for modulating PEO:PAA ratio within assembled films by manipulating pH is discussed. Ionic conductivity of 5 x 10(-5) S/cm is achievable after short exposure to 100% relative humidity (RH) for plasticization. Adding free ions by exposing PEO/ PAA films to lithium salt solutions enhanced conductivity to greater than 10(-5) S/cm at only 52% RH and tentatively greater than 10(-4) S/cm at 100% RH. The excellent stability of PEO/PAA films even when exposed to 1.0 M salt solutions led to an exploration of LBL assembly with added electrolyte present in the adsorption step. Fortuitously, the modulation of PEO/PAA assembly by ionic strength is analogous to that of electrostatic LBL assembly and can be attributed to electrolyte interactions with PEO and PAA. Dry ionic conductivity was enhanced in films assembled in the presence of salt as compared to films that were merely exposed to salt after assembly, implying different morphologies. These results reveal clear directions for the evolution of these promising solid polymer electrolytes into elements appropriate for electrochemical power storage and generation applications.  相似文献   

8.
利用重氮偶合反应和后重氮偶合反应制备了主链和端基含有不同假芪型偶氮苯生色团的超支化偶氮聚合物.利用氢核磁共振、紫外光谱、红外光谱等分析手段确定了合成聚合物的结构、玻璃化转变温度和光谱特性等.研究了聚合物光致二向色性的性能,此聚合物的取向有序度为0.063.用两束相干的P偏振Ar+激光对聚合物膜进行光加工,得到形状规则的正弦波形表面起伏光栅,末端偶氮苯基团的引入极大地增加了超支化偶氮聚合物的光响应速度.  相似文献   

9.
The interface of planar TiO(2)/polymer photovoltaic cells was modified with two carboxylated polythiophenes having different densities of carboxylic acid groups. Both of the interface modifiers increase the photocurrent of the cells but lower the open-circuit voltage. The work function of the TiO(2), measured using a Kelvin probe, increases with increasing density of carboxylic acid groups due to the formation of interfacial dipoles pointing toward the TiO(2) surface. The formation of interfacial dipoles results in a shift in the band offset at the TiO(2)/polymer interface, which explains the decrease in the open-circuit voltage. This work demonstrates that care must be taken when using carboxylic acid side groups to attach polymers to titania surfaces in photovoltaic cells. If the density of attachment groups is just enough to attach the polymer, then the benefits of the interface modifier can be realized without substantially decreasing the open-circuit voltage.  相似文献   

10.
Silver nanocomposite multilayer films were prepared through the in situ method. Multilayer thin films, prepared through the sequential electrostatic deposition of a positively charged third-generation poly(amidoamine) dendrimer (PAMAM) and negatively charged poly(styrenesulfonate) (PSS) and poly(acrylic acid) (PAA), were utilized as nanoreactors for the formation of silver nanoparticles. The silver ions were preorganized in layer-by-layer (LBL) films composed of PAMAM dendrimers and subsequently reduced with hydrogen to prepare the silver nanoparticles. The UV-vis spectrum and profilometer were used to characterize the regular growth of bilayers. UV-vis absorption from plasmon resonance at 435 nm and TEM images indicated the formation of the silver nanoparticles in the multilayer films. The silver nanocomposite LBL films were also constructed on the indium tin oxide-glass and investigated using cyclic voltammetry. The silver nanoparticles in the multilayer films have a stronger negative redox potential. The silver nanocomposite LBL films may have a potential application in the catalysis of reduction of 4-nitrophenol with sodium borohydride.  相似文献   

11.
Multilayer films of oligo(pyrenebutyric acid) (OPB) and N,N'-bis(N,N-dimethylaminopropylaminopropyl)-3,4,9,10-perylenediimide (BDMAPAP-PDI) were successfully fabricated by layer-by-layer deposition. Multilayer growth was monitored by ultraviolet-visible (UV-vis) spectroscopy, fluorescence spectroscopy, ellipsometry, and atomic force microscopy (AFM). It was found that extraction was scarcely observed although both components (OPB and BDMAPAP-PDI) have low molecular weights and both electrostatic interactions and pi-pi stacking contributed to the multilayer deposition. The multilayers exhibit a rapid photocurrent response, and excitations of both OPB and BDMAPAP-PDI can lead to the effective charge dissociation. The incident photon to current conversion efficiency (IPCE) of the composite film with 5 bilayers was measured to be 1.29% at the absorption peak of BDMAPAP-PDI. Fluorescence quenching and photovoltaic conversion studies indicated that strong photoinduced charge transfer interactions occurred at the area of OPB/BDMAPAP-PDI heterojunction in the films, which strongly enhanced the photoresponse of the multilayer films.  相似文献   

12.
采用AFM、XRD和EDS等手段,对TiNi合金在空气中、400—800℃下形成的氧化膜组织结构进行了分析,并对TiNi合金表面原位热氧化膜的光电性能进行了研究.结果表明,TiNi合金在空气中氧化原位形成的氧化膜的结构主要为金红石型二氧化钛,不同温度下生长的氧化膜存在择优取向;随着氧化温度的升高,所制备的TiO2/TiNi电极的稳态光电流和开路光电压随氧化温度的升高先增大后减小,在700℃所制备的TiO2/TiNi电极的稳态光电流最大.  相似文献   

13.
本文利用所合成的4'-(4''-重氮基)苯基-(2,2':6',2')-三联吡啶氟硼酸盐(Diazo-tpy)在紫外光照射下的光分解反应特性,实现三联吡啶基团与基片之间形成共轭价键连接,这不仅提高了自组装膜的稳定性,而且降低了载流子在两者之间传输时的阻抗;在此基础上,通过两端含三联吡啶的直线型配体1,4-二-(2,2':6',2'-三联吡啶)基苯(Bi-tpy)与四种过渡金属离子(Mtn+:Pt4+、Ru3+、Rh3+、Pd2+)之间的配位作用,通过层-层自组装制备了全共轭金属-有机自组装超薄功能膜。由紫外-可见光谱跟踪自组装过程证明了自组装过程的成功实现,还分析了金属离子的种类对自组装的影响规律。光电转换测试表明Bi-tpy/Ru3+自组装膜要比Bi-tpy/ Pt4+具有更明显的光电转换性能;同时,由于缺陷与阻抗随层数的增加而增大的原因,在自组装6层时光电流达到最大值。这为我们设计新型光电转换器件提供参考依据。  相似文献   

14.
The effect of lithium iodide concentration on the conduction behavior of poly(ethylene oxide)-poly(vinylidene fluoride) (PEO-PVDF) polymer-blend electrolyte and the corresponding performance of the dye-sensitized solar cell (DSSC) were studied. The conduction behavior of these electrolytes was investigated with varying LiI concentration (10-60 wt % in polymer blend) by impedance spectroscopy. A "polymer-in-salt" like conduction behavior has been observed in the high salt concentration region. The transition from "salt-in-polymer" to "polymer-in-salt" conduction behavior happened at the salt content of 23.4 wt %, which is much lower than 50 wt % as generally reported. The electrolyte shows the highest ionic conductivity (approximately 10(-3) S cm(-1)) at the salt concentration above 23.4 wt %. From the evaluation of salt effect on the performances of corresponding DSSC, we find that increasing LiI concentration leads to increased short-circuit photocurrent density (Jsc) caused by enhanced I3(-) diffusion up to an LiI content of 28.9 wt %. Above this limitation, the Jsc decreases as a result of increased charge recombination caused by the further increased I3(-) concentration. The open-circuit voltage (Voc) increases gradually with LiI concentration owing to the enhanced I(-) content in DSSC. The optimized conversion efficiency is obtained at a salt content of 28.9 wt % in the "polymer-in-salt" region, with high ionic conductivity (1.06 x 10(-3) S cm(-1)). Based on these facts, we suggest that the changes of conduction behavior and the changes of I3(-) and I(-) concentrations in the electrolytes contribute to the final performance variation of the corresponding DSSC with varying LiI concentration.  相似文献   

15.
CdS敏化对TiO2纳米薄膜电极光生电荷转移特性的影响   总被引:20,自引:2,他引:18  
1991年Gratzel等[1]以敏化的TiO2纳米薄膜电极组成的液体结光电化学太阳能电池(PEC),其光电转换效率(IPCE)达到10%. 最近,选用固态电解质使这种PEC的IPCE达到33%[2].于是用有机染料[3,4]及窄带隙半导体纳米微粒[5]敏化的电极受到了广泛关注.  相似文献   

16.
The nonlinear optical processes involved in etching thin polymer films by direct-write multiphoton photolithographic methods (Higgins et al. Appl. Phys. Lett. 2006, 88, 184101) are systematically explored. Power-dependent etching data are obtained for thin films of several commercial polymers, including poly(methyl methacrylate) (PMMA), polystyrene (PS), poly(butyl methacrylate) (PBMA), and poly[2-(3-thienyl)ethyloxy-4-butylsulfonate] (PTEBS). Femtosecond pulses of light from a Ti:sapphire laser are focused to a diffraction limited spot of approximately 570 nm 1/e2 diameter in the films to induce etching. The power dependence of etching in each polymer is used to determine the order of the nonlinear optical process involved. The results for PMMA and PBMA, both of which absorb to the blue of 240 nm, demonstrate that etching involves absorption of several (i.e., 4-6) photons by the polymer, whereas PS, which absorbs wavelengths shorter than 280 nm, is etched by a lower-order process involving fewer (i.e., 3-4) photons. PTEBS, a conducting polymer that absorbs in the visible, is etched by a two-photon process. The results are consistent with an etching mechanism that involves multiphoton-induced depolymerization of the polymer, followed by vaporization of the resulting fragments. The etching resolution is found to be highest for polymers having high glass transition temperatures, low molecular weights, and no visible absorption. Among the polymers examined, low molecular weight PMMA is concluded to be the best polymer for use with this lithographic method. Finally, soft lithography is used to transfer patterns produced in a PMMA film onto poly(dimethylsiloxane), demonstrating a simple means for fabricating submicrometer-scale structures for use in micro- and nanofluidic devices.  相似文献   

17.
The photosensitive multilayer films from sulfonated metal-free, sulfonated copper-, and sulfonated nickel-phthalocyanines were fabricated with diazoresin layer by layer on a substrate via electrostatic interaction by the self-assembly technique. Under UV irradiation, the linkage nature between the layers of the film is converted from the electrostatic bonding to covalent bonding. The covalently attached multilayer films are very stable towards polar solvents and salt aqueous solutions. The photovoltaic properties of the covalently attached film can be determined by means of a traditional three-electrode photoelectrochemical cell in aqueous solutions with KCI as the supporting electrolyte. The photocurrent determination has shown that the sulfonated copper-containing phthalocyanine films possess a higher photocurrent value than sulfonated metalfree and sulfonated nickel-containing phthaloeyanine films.  相似文献   

18.
Based on hydrogen-bonding layer-by-layer (LBL) assembly in aqueous solution, poly(vinylpyrrolidone) (PVPON) and a spherical polymer brush with a poly(methylsilsesquioxane) (PSQ) core and poly(acrylic acid) (PAA) hair chains were used to fabricate composite multilayer thin films. Hydrogen bonding as the driving force was confirmed by FT-IR spectrometry. A simple method (Filmetric F20) was introduced to determine the thickness and refractive index of the films. The film thickness was found to be a linear function of the number of bilayers. The average increase in thickness per bilayer is 28.3 nm. The film morphology was characterized with scanning electron microscopy and atomic force microscopy. The images obtained from the two instruments show a great resemblance. The films were further calcined to get an inorganic film by removing the organic components, or treated with tetrabutylammonium fluoride (TBAF) to remove the PSQ core and get an organic film. The optical properties and morphological changes induced by these treatments were also studied.  相似文献   

19.
Comprehensive characterization of new polymer electrolyte system prepared using polyurethane derived from castor oil polyol was undertaken. The castor oil polyol was synthesized via transesterification and reacted with 4,4′-diphenylmethane diisocyanate to form polyurethane. Polyurethane electrolyte films were prepared by addition of sodium iodide in different weight percentage with respect to the weight of the polymer. The electrolyte films were analyzed using Fourier transform infrared spectroscopy, dynamic mechanical analysis, electrochemical impedance spectroscopy, transference number measurement, and linear sweep voltammetry. Fourier transform infrared spectroscopy results confirmed the complexation between polymer and salt. Tan delta peak observed in the tan δ–temperature curve plotted using data obtained from dynamic mechanical analysis indicated that the glass transition temperature of polyurethane decreased with the addition of sodium iodide. The highest conductivity of 4.28 × 10?7 S cm?1 was achieved for the film with 30 wt% of sodium iodide. The performances of dye-sensitized solar cell using the electrolyte systems were analyzed in terms of short-circuit current density, open-circuit voltage, fill factor, and energy conversion efficiency. The polymer electrolyte with 30 wt% sodium iodide showed the best performance with energy conversion efficiency of 0.80%.  相似文献   

20.
The layer‐by‐layer (LBL) assembly technique is an attractive method to make functional multilayer thin films and has been applied to fabricate a wide range of materials. LBL materials could improve optical transmittance and mechanical properties if the film components were covalently bonded. Covalently bonded nanocomposite multilayer films were prepared by employing hydrophilic aliphatic polyisocyanate (HAPI) as the reactive component, to react with Laponite and polyvinyl alcohol (PVA). FT‐IR spectra suggested that HAPI reacted with Laponite and PVA at ambient temperature rapidly. Ellipsometry measurement showed that the film thickness was in linear growth. The influences of HAPI on the optical, mechanical and thermal properties of the films were investigated by UV‐Vis spectroscopy, tensile stress measurement, DSC and TGA. The obtained results showed that the optical transmittance and mechanical strength were enhanced when the film components were covalently bonded by HAPI. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 545–551  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号