首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inorganic calcium carbonate precipitation from natural seawater and saline water at various pH values was carried out experimentally. The results show the clear positive relationships between boron concentration and δ11B of inorganic calcium carbonate with the pH of natural seawater and saline water. However, the variations of boron isotopic fractionation between inorganic calcite and seawater/saline water with pH are inconsistent with the hypothesis that B(OH)4- is the dominant spe-cies incorporated into the biogenic calcite structure. The isotopic fractionation factors α between synthetic calcium carbonate precipitate and parent solutions increase systematically as pH increases, from 0.9884 at pH 7.60 to 1.0072 at pH 8.60 for seawater and from 0.9826 at pH 7.60 to 1.0178 at pH 8.75 for saline water. An unusual boron isotopic fractionation factor of larger than 1 in synthetic calcium carbonate precipitated from seawater/saline water at higher pH is observed, which implies that a substantial amount of the isotopically heavier B(OH)3 species must be incorporated preferentially into synthetic inorganic carbonate. The results propose that the incorporation of B(OH)3 is attributed to the formation of Mg(OH)2 at higher pH of calcifying microenvironment during the synthetic calcium carbonate precipitation. The preliminary experiment of Mg(OH)2 precipitated from artificial seawater shows that heavier 11B is enriched in Mg(OH)2 precipitation, which suggests that isotopically heavier B(OH)3 species incorporated preferentially into Mg(OH)2 precipitation. This result cannot be applied to explain the boron isotopic fractionation of marine bio-carbonate because of the possibility that the unusual environment in this study appears in formation of marine bio-carbonate is infinitesimal. We, however, must pay more attention to this phenomenon observed in this study, which accidentally appears in especially natural environment.  相似文献   

2.
A systematic and non-destructive technique is proposed for the determination of boron in coral samples by neutron-induced prompt γ-ray analysis (PGA) using a thermal neutron guide beam of the JRR-3M reactor. About 50–150 mg samples in sealed FEP film were irradiated and measured for 5000 s in the PGA system at a neutron flux of 2.4 × 107 n cm−2 s−1. In order to determine B content in coral skeletons, the Doppler-broadened γ-ray peak of 478 keV (10B) was used together with the correction of interference from the Na-peak of 472 keV. The analytical precision was ~3% for the JCp-1 coral standard. The data (n = 56) obtained by the present method showed a range of B content from 40.7 to 76.9 ppm which is similar to reported values. Boron in corals showed the highest levels in Rukan-sho (Okinawa) with an average B content of 62.5 ppm, whereas corals collected from Mizugama (Okinawa), Cebu (the Philippines) and Khang Khao (Thailand) exhibited B contents of 56.5, 53.0 and 45.7 ppm, respectively. The uptake of boron by living corals may be influenced by seawater pH related to higher seawater B(OH)4. In this paper we discuss factors controlling the B levels in corals.  相似文献   

3.
An improved technique for precise and accurate determination of boron isotopic composition in Na-rich natural waters (groundwater, seawater) and marine biogenic carbonates was developed. This study used a ‘micro-sublimation’ technique to separate B from natural sample matrices in place of the conventional ion-exchange extraction. By adjusting analyte to appropriate pH, quantitative recovery of boron can be achieved (>98%) and the B procedural blank is limited to <8 pg. An additional mass bias effect in MC-ICP-MS was observed which could not be improved via the standard-sample-standard bracketing or the ‘pseudo internal’ normalization by Li. Therefore a standard other than NBS SRM 951 was used to monitor plasma condition in order to maintain analytical accuracy. An isotope cross-calibration with results from TIMS shows that the space-charge mass bias on MC-ICP-MS can be successfully corrected using off-line mathematical manipulation. Several reference materials, including the seawater IAPSO and two groundwater standards IAEA-B-2 and IAEA-B-3, were used to validate this approach. We found that the δ11B of the reference coral JCp-1 was 24.22 ± 0.28‰, corresponding to seawater pH based on the coral δ11B-pH function.  相似文献   

4.
Summary The mechanism of the sorption of U on TiO2 · x H2O is investigated in absence and in presence of carbonate as function of pH. Speciation of U in solution and the state of the surface of TiO2 · x H2O are taken into account. In the experiments the mole fractions of the U species in presence of carbonate are the same as in seawater. Below pH 5 the sorption of U can be described in absence and in presence of carbonate by ion exchange of UO 2 2+ or alternatively by sorption of UO2OH+, because hydrolysis and sorption are occurring simultaneously. Above pH 5 in absence of carbonate, first pH-independent sorption of (UO2)3(OH) 7 and then (above the isoelectric point of TiO2 · x H2O) pH-dependent sorption of (UO2)3(OH) 7 are observed. In the same pH range, but in presence of carbonate, two species of U are dominating in solution, first UO2CO3OH and then UO2(CO3) 3 4– · UO2CO3OH is not sorbed in measurable amounts which causes a drastic decrease of the sorption ratio. UO2(CO3) 3 4– , which begins to dominate above pH 6 (depending on the carbonate concentration), is sorbed either by formation of TiOUO2 bonds or (at carbonate concentrations >10–2 mol/l) via carbonate bridges.
Sorption von Uranylionen an wasserhaltigem Titandioxid
  相似文献   

5.
A new method for the non-specific determination of iron-porphyrin-like complexes in natural waters has been developed. It is based on the chemiluminescent oxidation of the luminol in the presence of dioxygen (O2) at pH 13. The method has been implemented in a FIA manifold that allowed the direct injection of seawater. The limit of detection is 0.11 nM of equivalent hemin (Fe-protoporphyrin IX). Fe2+, Fe3+, H2O2, siderophore (deferoxamin mesylate), humic acid and phytic acid did not interfere when they were present at the concentrations expected in seawater. Metal free porphyrin and Mg, Cu, Co porphyrin complexes did not induce a significant chemiluminescent signal. Poisoned unfiltered samples could be stored for several weeks before analyses. The new method was successfully applied to the determination of the Fe-porphyrin complexes contained in cultured phytoplankton and in natural samples.  相似文献   

6.
He  Xuexian  Liu  Dunyi  Peng  Zicheng  Liu  Weiguo 《中国科学:化学(英文版)》2002,45(1):130-136

Stable oxygen isotopic compositions of a coral colony ofPorites lutea obtained on a core allowed the reconstruction of a 56-a (1943–1998) proxy record of the sea surface temperatures. This coral δ18O data are from the east of Hainan Island water (22°20’N, 110°39’E), South China Sea. The relationship between δ18O in the skeletal aragonite carbonate and the sea surface temperature (SST) is SST = -5.36 δ18OPDB-3.51 (r = 0.73,n = 470), dδ18O/d(SST) = -0.187‱/ °C; and the thermometer was set at monthly resolution. The 56-a (1943–1998) proxy record of the sea surface temperatures reflected the same change trend in the northern part of South China Sea as the air temperature change trend in China.

  相似文献   

7.
High-precision Mg isotope measurements by multiple collector inductively coupled plasma mass spectrometry were applied for determinations of magnesium isotopic fractionation of biogenic calcium carbonates from seawater with a rapid Mg purification technique. The mean δ26Mg values of scleractinian corals, giant clam, benthic foraminifera, and calcite deep-sea corals were −0.87‰, −2.57‰, −2.34‰, and −2.43‰, suggesting preferential precipitation of light Mg isotopes to produce carbonate skeleton in biomineralization. Mg isotope fractionation in deep-sea coral, which has high Mg calcite skeleton, showed a clear temperature (T) dependence from 2.5 °C to 19.5 °C: 1,000 × ln(α) = −2.63 (±0.076) + 0.0138 (±0.0051) × T(R 2 = 0.82, p < 0.01). The δ26Mg values of large benthic foraminifera, which are also composed of a high-Mg calcite skeleton, can be plotted on the same regression line as that for deep-sea coral. Since the precipitation rates of deep-sea coral and benthic foraminifera are several orders of magnitude different, the results suggest that kinetic isotope fractionation may not be a major controlling factor for high-Mg calcite. The Mg isotope fractionation factors and the slope of temperature dependence from deep-sea corals and benthic foraminifera are similar to that for an inorganically precipitated calcite speleothem. Taking into account element partitioning and the calcification rate of biogenic CaCO3, the similarity among inorganic minerals, deep-sea corals, and benthic foraminiferas may indicate a strong mineralogical control on Mg isotope fractionation for high-Mg calcite. On the other hand, δ26Mg in hermatypic corals composed of aragonite has been comparable with previous data on biogenic aragonite of coral, sclerosponges, and scaphopad, regardless of species differences of samples.  相似文献   

8.
The electrochemical performances of the α-, γ-, and δ-MnO2 with different crystallographic structures were systematically investigated in 0.5 mol/L Li2SO4, 0.5 mol/L Na2SO4, 1 mol/L Ca(NO3)2, and 1 mol/L?Mg(NO3)2 electrolytes. The results showed that the electrochemical performances of the manganese dioxides depended strongly on the crystallographic structures of MnO2 as well as the cation in the electrolytes. Because the δ-MnO2 consists with layers of structure and the interlayer separation is 7 Å, which is suitable for insertion/extraction of some alkaline and alkaline–earth cations, the δ-MnO2 electrode showed the higher specific capacitance than that of α-MnO2 and γ-MnO2. We also found that the α-, γ-, and δ-MnO2 electrodes in the Mg(NO3)2 electrolyte showed a higher specific capacitance, while all the α-, γ-, and δ-MnO2 electrodes in the Li2SO4 electrolyte exhibited a better cycle life. The reason for the different behavior of Li+ and Mg2+ during the charge/discharge process can be ascribed to the charge effect of the cations in the electrolytes. The ex situ X-ray diffraction (XRD) and long-time cyclic voltammogram measurements were used to systematically study the energy storage mechanism of MnO2-based electrodes. A progressive crystallinity loss of the materials is also observed upon potential cycling at the oxidized states. A reasonable charge/discharge mechanism is proposed in this work.  相似文献   

9.
ThO2(cr) was dissolved in the solutions containing various carbonate ion concentrations, and the results were compared with thorium solubility in a domestic granitic groundwater having very low ionic strength. The soluble thorium concentration excluding colloids after phase separation increased with increasing carbonate concentration. However, the thorium concentration in the real groundwater was remarkably greater than that in the carbonate-containing solutions with a similar concentration of carbonate and pH condition. This might be attributable to other species as well as Th(OH)4(aq) and Th(OH)3(CO3). These species form colloids or precipitates, and their concentration can be reduced in the ultra-filtered solution by an aging effect.  相似文献   

10.
Mineralogical and crystallochemical studies of endogenic carbonates from bottom sediments of some shalllow saline lakes of Western Transbaikalia are performed. X-ray diffraction (XRD), IR spectroscopy, electron microscopy, elemental analysis (SR XFA), analysis of stable δ18O and δ13C isotopes, and other methods are applied. By modeling the complex XRD profiles by means of the Pearson VII function Mgcalcites with different Mg concentrations and Ca-excess dolomites are found in the assemblage of carbonate minerals. It is shown that in a series of Mg-calcites there is a gap in the region 2θ CuK α = 30°, which is caused by a transition from the structures representing true solid solutions to the structures of layered “domain” nanosized crystals. The idea of excess-Ca dolomite as the extreme member of the Mgcalcite series is substantiated. The carbonate record containing data on the stratigraphical distribution of endogenic carbonates of the calcite-dolomite series is obtained. The amount and ratio of phases with different Mg concentrations in this series are determined by the value of the Mg/Ca ratio, the total salinity and alkalinity of lake waters in the past, changing in accordance with climate cycles and fluctuations of the lake level.  相似文献   

11.
Stable oxygen isotopic compositions of a coral colony ofPorites lutea obtained on a core allowed the reconstruction of a 56-a (1943–1998) proxy record of the sea surface temperatures. This coral δ18O data are from the east of Hainan Island water (22°20’N, 110°39’E), South China Sea. The relationship between δ18O in the skeletal aragonite carbonate and the sea surface temperature (SST) is SST = -5.36 δ18OPDB-3.51 (r = 0.73,n = 470), dδ18O/d(SST) = -0.187?/ °C; and the thermometer was set at monthly resolution. The 56-a (1943–1998) proxy record of the sea surface temperatures reflected the same change trend in the northern part of South China Sea as the air temperature change trend in China.  相似文献   

12.
The present study attempts to prepare Al-substituted α-Ni(OH)2 and Al-substituted α-Ni(OH)2 with modified interlayer anions by directly immersing pure α-Ni(OH)2 into AlCl3-containing solutions. XRD and FT-IR analysis demonstrated Al-substituted α-Ni(OH)2 can be prepared directly by soaking pure α-Ni(OH)2 into AlCl3 solution. Al-substituted α-Ni(OH)2 with S2O32? as the primary anion in the interlayer can be obtained by immersing pure α-Ni(OH)2 into AlCl3-Na2S2O3 solution. The analysis of Al content in samples demonstrated the Al content in the Al-substituted α-Ni(OH)2 was regulated by adjusting the molar ratio of pure α-Ni(OH)2 soaked in the solution and Al3+ dissolved in the solution. The Al element entered the lattice of pure α-Ni(OH)2 through a process of pure α-Ni(OH)2 dissolved followed by the precipitation of Al3+, Ni2+ and OH?. The S2O32? entered the interlayer of Al-substituted α-Ni(OH)2 through the formation process of the Al-substituted α-Ni(OH)2 or though ion exchange with the intercalated Cl?. The strongly alkaline solution soaking results demonstrated that Al-substituted α-Ni(OH)2 prepared by soaking pure α-Ni(OH)2 into AlCl3-containing solutions could preliminary get stabilized in the strongly alkaline solution.  相似文献   

13.
Mg(BO2)2在MgCl2水溶液中的相平衡与化学平衡   总被引:1,自引:0,他引:1  
借助拉曼光谱和X射线衍射(XRD)检测手段,对Mg(BO_2)_2在MgCl_2水溶液中水解的固液相平衡与物种化学平衡规律进行了研究。结果表明,MgCl_2对Mg(BO_2)_2的溶解转化、多硼氧配阴离子的物种分布有很大影响:(1)随着MgCl_2浓度从0达到饱和,Mg(BO_2)_2的表观饱和浓度从0.79%增加到1.96%,pH值从9.96降到6.27;(2)Mg(BO_2)_2在纯水中水解形成固相Mg_2B_6O_(11)·15H_2O和Mg(OH)_2,在MgCl_2溶液中形成固相Mg_2B_6O_(11)·15H_2O和Mg_3Cl_2(OH)_4·4H_2O;(3)Mg(BO_2)_2在纯水中水解,硼的物种主要为B_4O_5(OH)_4~(2-)和B_3O_3(OH)_4~-,分别占液相总硼含量的49.81%和19.54%。在MgCl_2饱和溶液中,主要为B_3O_3(OH)_4~-和B_5O_6OH)_4~-,分别占液相总硼含量的44.57%和40.00%。  相似文献   

14.
Hydration of medium reactive magnesium oxide using hydration agents   总被引:1,自引:0,他引:1  
Water, magnesium acetate, magnesium chloride, acetic acid and hydrochloric acid were used as hydrating agents for an industrially obtained MgO sample. The influence of these different hydrating agents on the pH of the hydrating solution, degree of hydration to Mg(OH)2, and product surface area was studied as a function of the temperature of hydration. When compared to the hydration in water, all hydrating agents improved the degree of hydration between 5 and 50% at all temperatures. MgCl2 and a mixture of HCl and Mg(CH3COO)2 seemed to be the most effective hydrating agents below 60°C, while at temperatures above 60°C Mg(CH3COO)2 formed the largest percentage Mg(OH)2. Mg(CH3COO)2 was the hydrating agent that showed the strongest temperature dependence. The mechanism of the hydration reaction seems to be dependent of the availability of Mg2+ ions and the increased formation of Mg(OH)2 as temperature increases.  相似文献   

15.
电泳法研究改性硅灰石的表面性质   总被引:1,自引:0,他引:1  
本工作用测定水合金属氧化物等电点的方法,作为评定在硅灰石表面镁的包膜技术,为硅灰石的一物多用提供了新的途径;亦为在硅灰石表面包覆其他金属氧化物找到了一种新的方法。 本工作还研究了影响镁包覆的几种因素,结果表明,在硅灰石表面镁包膜的最佳条件为:pH=10,氢氧化镁溶胶的浓度为0.1mol·1~(-1),平衡时间为1小时,液固质量比为10以上。  相似文献   

16.
We used scanning white light interferometry to view the craters produced during secondary ion mass spectrometry (SIMS) analysis of the CaCO3 skeleton of an aragonitic coral. The dimensions and volumes of craters sputtered during trace element, δ18O, δ13C and δ11B analyses were determined. Sputtering rates were ~6 µm3 nA?1 min?1 for a 16O? primary beam and ranged from ~12 µm3 nA?1 min?1 (for δ18O analyses) to ~19 µm3 nA?1 (for δ13C analyses) using a Cs+ primary beam. Sputter yields (atoms sputtered/impinging primary ions) ranged from 1.3 to 1.4 for a 16O? primary beam and from 2.5 to 4.5 using a Cs+ primary beam. Useful ion yields (ions detected/atoms sputtered), using instrument conditions typically used in geoscience applications, were of the order of 10?4 for B, Mg, Ca, Sr, Ba and C and 10?2 for O. The maximum lengths of the SIMS craters, at the sample surface, range from ~17 µm (δ13C analyses) to ~36 µm (δ11B analyses) and crater depths range from ≤3 µm (δ18O analyses) to >20 µm (δ11B analyses). These dimensions are significant in relation to accretion rates in a range of biogenic carbonates and SIMS analyses typically sample carbonate deposited over time periods of days to months depending on the organism and structure analysed. In culture calibration studies, accurate determination of the temporal resolution of the analysed volume is crucial to ensure that the entire volume reflects the culture conditions and does not include carbonate deposited prior to introduction of the organism to the culture system. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Infrared spectra (IR, FIR, DRIFT, 90 and 295 K) and DSC measurements of the various polymorphs of iron oxide hydroxide, viz. goethite (α), akaganéite (β), lepidocrocite (γ), and feroxyhite (δ), and of deuterated specimens are reported. They are discussed with respect to the crystal structures proposed in the literature, the hydrogen bonds present, the energies of the OH stretching, OH bending (librational), and translational modes, and their thermal decomposition. From the two space groups proposed for β- and γ-FeO(OH), the groups I4/m and Cmc21, respectively, seem to be more reliable. The disorder of the OH ions of γ-FeO(OH) has not been confirmed in contrast to that of δ-FeO(OH). The intraionic O(H,D) distances of γ- and δ-FeO(OH) derived from neutron powder diffraction studies have to be doubted. The greater strength of the OHOH hydrogen bonds of lepidocrocite, for example, compared to that of the OHO hydrogen bonds of goethite despite the larger hydrogen bond acceptor capability of O2− is due to the strong cooperativity of the hydrogen bonds of the γ-polymorph. The extremely different strength of the hydrogen bonds of isostructural α-AlO(OH) (vOH = 2950 cm−1, 295 K), α-MnO(OH) (vOH = 2686 cm−1), and α-FeO(OH) (vOH = 3130 cm−1) is caused by the different synergetic effect of the metal ions involved, especially that of Mn3+ due to its Jahn-Teller behaviour. The decomposition temperatures and heats of the various FeO(OH) modifications as well as the halfwidths of the DSC peaks evidence a much faster decomposition rate of akaganéite than those of the other polymorphs. This is obviously due to the Cl ion impurities present in this compound.  相似文献   

18.
The ability to use calculated OH frequencies to assign experimentally observed peaks in hydrogen bonded systems hinges on the accuracy of the calculation. Here we test the ability of several commonly employed model chemistries—HF, MP2, and several density functionals paired with the 6‐31+G(d) and 6‐311++G(d,p) basis sets—to calculate the interaction energy (De) and shift in OH stretch fundamental frequency on dimerization (δ(ν)) for the H2O → H2O, CH3OH → H2O, and H2O → CH3OH dimers (where for XY, X is the hydrogen bond donor and Y the acceptor). We quantify the error in De and δ(ν) by comparison to experiment and high level calculation and, using a simple model, evaluate how error in De propagates to δ(ν). We find that B3LYP and MPWB1K perform best of the density functional methods studied, that their accuracy in calculating δ(ν) is ≈ 30–50 cm?1 and that correcting for error in De does little to heighten agreement between the calculated and experimental δ(ν). Accuracy of calculated δ(ν) is also shown to vary as a function of hydrogen bond donor: while the PBE and TPSS functionals perform best in the calculation of δ(ν) for the CH3OH → H2O dimer their performance is relatively poor in describing H2O → H2O and H2O → CH3OH. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

19.
We have developed CuII‐catalyzed enantioselective conjugate‐addition reactions of boron to α,β‐unsaturated carbonyl compounds and α,β,γ,δ‐unsaturated carbonyl compounds in water. In contrast to the previously reported CuI catalysis that required organic solvents, chiral CuII catalysis was found to proceed efficiently in water. Three catalyst systems have been exploited: cat. 1: Cu(OH)2 with chiral ligand L1 ; cat. 2: Cu(OH)2 and acetic acid with ligand L1 ; and cat. 3: Cu(OAc)2 with ligand L1 . Whereas cat. 1 is a heterogeneous system, cat. 2 and cat. 3 are homogeneous systems. We tested 27 α,β‐unsaturated carbonyl compounds and an α,β‐unsaturated nitrile compound, including acyclic and cyclic α,β‐unsaturated ketones, acyclic and cyclic β,β‐disubstituted enones, acyclic and cyclic α,β‐unsaturated esters (including their β,β‐disubstituted forms), and acyclic α,β‐unsaturated amides (including their β,β‐disubstituted forms). We found that cat. 2 and cat. 3 showed high yields and enantioselectivities for almost all substrates. Notably, no catalysts that can tolerate all of these substrates with high yields and high enantioselectivities have been reported for the conjugate addition of boron. Heterogeneous cat. 1 also gave high yields and enantioselectivities with some substrates and also gave the highest TOF (43 200 h?1) for an asymmetric conjugate‐addition reaction of boron. In addition, the catalyst systems were also applicable to the conjugate addition of boron to α,β,γ,δ‐unsaturated carbonyl compounds, although such reactions have previously been very limited in the literature, even in organic solvents. 1,4‐Addition products were obtained in high yields and enantioselectivities in the reactions of acyclic α,β,γ,δ‐unsaturated carbonyl compounds with diboron 2 by using cat. 1, cat. 2, or cat. 3. On the other hand, in the reactions of cyclic α,β,γ,δ‐unsaturated carbonyl compounds with compound 2 , whereas 1,4‐addition products were exclusively obtained by using cat. 2 or cat. 3, 1,6‐addition products were exclusively produced by using cat. 1. Similar unique reactivities and selectivities were also shown in the reactions of cyclic trienones. Finally, the reaction mechanisms of these unique conjugate‐addition reactions in water were investigated and we propose stereochemical models that are supported by X‐ray crystallography and MS (ESI) analysis. Although the role of water has not been completely revealed, water is expected to be effective in the activation of a borylcopper(II) intermediate and a protonation event subsequent to the nucleophilic addition step, thereby leading to overwhelmingly high catalytic turnover.  相似文献   

20.
Summary Iron separation is described from liquid samples with a high concentration of ions that enables simple determination of 55Fe. One of the described methods consists of iron precipitation from a large volume seawater by sodium hydroxide and/or ammonium carbonate and separation from other elements (Ca, Sr, Cu, Mg, etc.) on a TRU column with 4M HCl or 8M HNO3. In the other procedure iron is separated directly from a mixture of seawater samples and HCl on a TRU column. In both methods, the iron recovery is almost 100%. After separation, 55Fe is determined by counting with a liquid scintillation counter. The binding of Fe and Zn on TEVA, U/TEVA and TRU resins from seawater solutions of HCl and HNO3depends on the type of the resin, concentration of acid and other ions. Iron and zinc can be separated from seawater on a U/TEVA column with 2M HCl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号