首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
王福慧  刘辉彪 《无机化学学报》2019,35(11):1999-2012
锌离子二次电池具有优异的充放电性能、高功率密度和能量密度、低成本、高安全性和环境友好的特点,极具发展前景。金属锌,因优异的导电性、低的平衡电势、高的理论比容量和低成本等因素,是水系二次电池中理想的负极材料,然而也存在着枝晶生长、腐蚀和钝化等问题,限制了锌离子二次电池的可逆容量和循环寿命,通过优化调节锌负极的形貌与表面修饰等方法可以提高电池性能。本文综述了水系锌离子二次电池负极材料的研究进展,涵盖了金属锌负极、复合锌负极和锌合金,且展望了锌负极的发展前景。  相似文献   

2.
随着锂离子电池向电动汽车、可再生能源储能系统等大型应用领域发展,锂离子电池的能量密度、功率密度等性能指标需要进一步提高。在负极材料方面,传统的石墨碳负极材料的比容量有限,已经难以满足高能量密度电池的需求。以Si基材料为代表的新型高比容量负极材料受到了人们的广泛关注。其中,Si Ox材料在发挥高比容量的同时,具有相比纯Si更小的体积变化,因而在循环寿命方面更具实用潜力。本文对目前报道的Si Ox基负极材料的研究工作进行总结,系统阐述了Si Ox材料的基本电化学性能、结构模型、电化学机理及合成方法,分类介绍了改进Si Ox材料电化学性能的各类措施,并对其中Si O及无定形Si O2材料进行了重点论述。研究表明,氧含量、歧化程度、表面状态等对Si Ox材料的电化学性能具有重要影响;界面团簇混合(ICM)结构模型可更好地对其电化学机理进行理解;通过与第二相(碳、金属、金属氧化物等)复合,造孔,表面改性(包覆、刻蚀等)及其他手段(改变粘结剂及电解液)可有效提升Si Ox基材料的首次库仑效率和循环性能;部分使用Si Ox基材料的全电池具有循环600次后容量保持率达90%的优秀循环性能。Si Ox基材料已成为一种在高比能量锂离子电池中极具应用潜力的负极材料。  相似文献   

3.
王照民  易政  钟鸣  程勇  王立民 《应用化学》2018,35(7):745-755
Sb基材料作为一类合金机制的锂离子电池负极材料,因具有比容量高、安全性好等优点受到广泛关注。 然而,由于Sb基负极材料在充放电过程中的体积效应和本身导电性较差等问题导致的循环性能不理想,制约了其作为锂离子电池负极材料的商业化应用。 本文综述了近年来在锂离子电池Sb基各类负极材料方面的研究进展,重点介绍了它们的反应机理、合成方法及电化学性能,并对Sb基负极材料的发展方向进行了展望。  相似文献   

4.
锂离子二次电池已成为日常生活中不可或缺的一部分, 而现有的锂离子电池并不能完全满足电动汽车领域高能量密度的要求, 发展具有高能量密度的电极材料是解决问题的关键. 硅负极因理论比容量高、 脱嵌锂电位低、 来源广泛等优点而备受关注, 但其巨大的体积变化(约300%)以及低的首次库仑效率阻碍了其商业应用. 预锂化技术可以有效提高首次库仑效率、 实现高性能硅基负极, 本文阐述了预锂化的科学必要性, 介绍了各种预锂化的方法以及优缺点, 最后对硅基负极预锂化应用的挑战和前景进行了展望.  相似文献   

5.
锂离子电池的商业石墨负极材料的容量已经接近理论值,限制了动力电池的发展,开发容量高、稳定性好、循环寿命长和倍率性能优良的新型负极材料显得尤为重要。钴基氧化物材料由于其具有较高的比容量,是锂离子电池的理想负极材料之一。本文分别从结构设计和化学成分调控2个方面,结合本课题组近年来的研究及国内外重要文献综述了钴基氧化物作为锂离子电池负极材料的研究进展。在结构设计方面,通过构建一维结构、二维结构、三维结构、空心结构、碳材料支撑结构以及异质结构来增加钴基氧化物的反应活性位点数量;而在化学成分调控方面则通过引入无定型结构、非金属杂原子掺杂、金属杂原子掺杂、构筑高熵氧化物来提高钴基氧化物的本征活性,从而提高钴基氧化物的锂离子电池性能。最后,对钴基氧化物在锂离子电池领域未来的发展进行了展望。  相似文献   

6.
王华丽  白莹  陈实  吴锋  吴川 《化学进展》2013,(8):1392-1400
金属铝是一种很高的能量载体,是开发电池的理想电极材料。由于铝在二次电池中的应用体系主要集中在高温熔盐铝二次电池,其熔盐电解质需要高温,对环境要求苛刻,成本较高难于维护,限制了铝二次电池的发展。近年来,室温离子液体作为二次电池的电解液的研究,使得室温铝二次电池的开发与应用成为可能,人们开始研究基于离子液体电解液的室温有机熔盐二次电池,采用铝或者嵌铝化合物作为电极材料,离子液体作为电解液,与传统的二次电池相比具有很多优点。本文介绍了近年来室温铝二次电池相关的研究和应用新进展,包括金属铝负极的优化和铝枝晶的抑制,可嵌脱铝负极材料的设计,可用于铝二次电池的过渡金属氧化物和导电聚合物正极材料及其性能,以及电解液的要求和离子液体作电解液的优势,并指出了可能存在的问题以及相应的解决办法。  相似文献   

7.
钠离子电池锡负极因具有较高的理论容量(847 mA·h/g)、 高电导率和合适的工作电位而备受关注. 但锡基负极材料在循环过程中会发生巨大的结构变化, 进而导致活性材料粉化失活和比容量的快速下降. 本文成功制备了基于石墨氮化碳(g-C3N4)、 聚多巴胺衍生的氮掺杂碳(NC)和Sn纳米颗粒的复合物(g-C3N4/Sn/NC), 其中Sn纳米颗粒包埋在石墨氮化碳和氮掺杂碳中. 在此多层分级结构中, g-C3N4和NC的引入可以显著加速电子/离子的传输及电池反应动力学, 从而有助于Sn和钠离子之间的合金化反应; 此外, 这种复合结构有助于保持电极材料的结构稳定性, 进而可以获得优异的储钠性能. 作为钠离子电池负极材料, g-C3N4/Sn/NC在0.5 A/g电流密度下经历100次循环, 可逆容量可以达到450.7 mA·h/g; 在1.0 A/g电流密度下, 比容量为388.3 mA·h/g; 此外, 在1.0 A/g电流密度下, 经过400次循环后其比容量依旧能达到363.3 mA·h/g.  相似文献   

8.
通过中间相沥青熔融纺丝、预氧化、炭化及石墨化处理制得了带状中间相沥青基石墨纤维。研究了喷丝孔尺寸和纺丝速率对带状石墨纤维横截面碳层片取向和晶体结构的影响,对用作锂离子电池负极材料的带状石墨纤维的电化学性能进行了测试。结果表明:喷丝孔尺寸和纺丝速率对石墨纤维碳层片取向具有显著影响。采用低长宽比的喷丝孔在低纺丝速率下制备的石墨纤维其碳层片取向呈类辐射状,此石墨纤维负极材料的倍率性能较好,在0.1C和1C倍率下其放电比容量分别为336和300 mAh·g-1,但其循环稳定性较差,在0.1C倍率下循环100次后容量保持率为89.1%;采用高长宽比的喷丝孔在低纺丝速率下制备的石墨纤维其碳层片呈波浪褶皱状且沿平行纤维主平面取向度高,此石墨纤维负极材料的倍率性能相对较差,但其循环稳定性较好,在0.1C倍率下循环100次后容量保持率为98.8%。随纺丝速率的增加,石墨纤维碳层片整体有序度降低,平行纤维主平面取向的碳层片含量减小,由此导致纤维负极材料的可逆比容量下降。  相似文献   

9.
刘志超  穆洪亮  李艳  冯柳  王东  温广武 《化学进展》2021,33(11):2002-2023
碱金属离子电池是指以Li+、Na+、K+离子为载体的二次电池,其能量密度高、使用寿命长,在电子设备、清洁能源存储中应用广泛。负极是影响电池性能的关键因素,迫切需要开发高比容量和强结构稳定性的负极。基于转换反应的金属化合物负极理论容量高、安全性好、资源丰富,然而其导电性较差,体积效应大,会损害倍率和循环性能。利用金属有机框架材料(MOFs)可以有效解决上述问题,由MOFs衍生的金属化合物优势明显:(1)孔道丰富,离子迁移快;(2)比表面大,活性位点多;(3)结构和组成可调。本文对MOFs衍生转换型负极及其在碱金属离子电池上的应用进行了系统性梳理,综述了MOFs衍生各类化合物的研究进展,总结了由MOFs制备转化型负极的性能提升策略及机理,以及应用于电池负极的优势与挑战,并对研究新趋向进行展望。  相似文献   

10.
采用硫单质作正极和金属锂为负极组成的锂硫(Li-S)电池具有很高的理论比能量(2600 Wh·kg-1),被认为是一种具有广泛应用前景的二次电池。其中,正极硫具有高的理论比容量(1675 mAh·g-1),储量丰富且环境友好。然而,硫较差的导电性、多硫化物的穿梭效应和锂枝晶生长等导致了Li-S电池在循环过程中容量衰减快、库仑效率低和安全隐患等问题,严重阻碍了其大规模应用。通过隔膜修饰提高Li-S电池的性能是一种有效的方法,近年来取得了很大进展。碳材料是较常见的一种隔膜修饰材料,本文综述了近年来常见碳材料及碳基复合材料用于修饰Li-S电池隔膜进而改善电池性能方面的研究进展,重点介绍了修饰层的设计及提升Li-S电池容量的机理。  相似文献   

11.
惠康龙  傅继澎  高湉  唐明学 《应用化学》2020,37(12):1384-1402
低成本、长寿命、高安全性、高性能且易于大规模生产的锂/钠离子电池已被证实为重要的二次储能设备。 电极材料对锂/钠电池性能与循环寿命影响极大,金属硫化物由于具有高比容量和低电势而极具潜力成为锂/钠离子电池负极材料。 在电化学循环过程中,由于金属硫化物容易产生穿梭效应和体积变化,从而电极材料结构被破坏,进一步导致电池容量衰退、稳定性降低。 本文总结了多种金属硫化物的微观结构调控策略,从三维空间构建到与其它材料的复合,增强了电极的导电性和减缓体积变化带来的负面影响,进而获得性能优异的金属硫化物负极材料。 通过对金属硫化物的结构与性能的讨论,对其研究前景进行了积极的展望。  相似文献   

12.
对高比能量锂离子电池需求的不断增加激发了锂金属负极的应用研究。锂金属具有高放电比容量(3860 mAh·g?1),低电极电位(?3.04 V),是锂离子电池的理想负极材料。然而,锂金属在循环过程中会形成不稳定的固态电解质(SEI)膜,而且会生成枝晶,枝晶的生长会引发电池短路等安全问题,极大地阻碍了其应用。理想的SEI膜应具有良好的锂离子传导性、表面电子绝缘性和机械强度,可调控锂离子在表面均匀沉积,促进离子传输,抑制枝晶生长,因此构筑功能化SEI膜是解决锂金属负极所面临挑战的一项有效策略。本综述以锂金属枝晶形成和生长的机理为出发点,分析总结SEI膜的构建策略、不同组成SEI膜的结构和功能特性及其对锂金属负极性能的影响,并对锂金属实用化面临的挑战及未来发展方向进行了展望。  相似文献   

13.
本文采用机械辊压方法在金属锂表面通过原位固相反应生成LiC6异质微结构界面层,并研究了在碳酸酯有机电解液体系下该异质层对锂电化学沉积和溶解行为的影响。通过形貌表征与电化学测试发现,LiC6异质层能够有效提升锂电化学沉积的可逆性与均匀性,从而抑制枝晶生长及维持沉积/溶解界面的稳定。使用异质层改性金属锂负极的扣式全电池也较纯金属锂负极体系表现出更为优异的循环稳定性。  相似文献   

14.
Carbon nanomaterials, especially graphene and carbon nanotubes, are considered to be favorable alternatives to graphite‐based anodes in lithium‐ion batteries, owing to their high specific surface area, electrical conductivity, and excellent mechanical flexibility. However, the limited number of storage sites for lithium ions within the sp2‐carbon hexahedrons leads to the low storage capacity. Thus, rational structure design is essential for the preparation of high‐performance carbon‐based anode materials. Herein, we employed flexible single‐walled carbon nanotubes (SWCNTs) with ultrahigh electrical conductivity as a wrapper for 3D graphene foam (GF) by using a facile dip‐coating process to form a binary network structure. This structure, which offered high electrical conductivity, enlarged the electrode/electrolyte contact area, shortened the electron‐/ion‐transport pathways, and allowed for efficient utilization of the active material, which led to improved electrochemical performance. When used as an anode in lithium‐ion batteries, the SWCNT‐GF electrode delivered a specific capacity of 953 mA h g?1 at a current density of 0.1 A g?1 and a high reversible capacity of 606 mA h g?1 after 1000 cycles, with a capacity retention of 90 % over 1000 cycles at 1 A g?1 and 189 mA h g?1 after 2200 cycles at 5 A g?1.  相似文献   

15.
金属锂由于其极高的理论比容量(3860mAh·g~(-1),2061mAh·cm~(-3))和低的还原电势(相对于标准氢电极(SHE)为-3.04 V)等特点,成为了高能量密度锂电池负极材料的极佳选择之一。从上个世纪七十年代开始,科研工作者便开始了金属锂负极的研究,然而,由于金属锂与电解液反应严重,镀锂过程体积膨胀大,且在循环中易生成枝晶,以金属锂为负极的电池循环稳定性差,而且容易短路从而带来安全隐患。因此金属锂做为锂电池负极的商业化推广最终没有成功。在本工作中,我们在前期设计的锂-碳纳米管复合微球(Li-CNT)中引入了纳米硅颗粒制备了硅颗粒担载的锂-碳复合球(LiCNT-Si)。实验发现,纳米硅颗粒的加入不仅提高了锂-碳复合微球的载锂量(10%(质量百分含量)的硅添加量使得比容量从2000 mAh·g~(-1)提高到2600 mAh·g~(-1)),降低了锂的沉积/溶解过电势,有利于引导锂离子回到复合微球内部沉积,大大提高了材料的循环稳定性。同时,担载了纳米硅颗粒的锂-碳复合球也继承了锂-碳复合微球循环过程中体积膨胀小,不长枝晶的优点。而且添加的纳米硅颗粒还填充了Li-CNT微球中的孔隙,减少了电解液渗入复合微球内部腐蚀里面的金属锂,进一步提高了材料的库仑效率。以添加10%硅的锂碳复合材料作为负极,与商用磷酸铁锂正极组成全电池,在常规酯类电解液中1C (0.7 mA·cm~(-2))条件下能稳定循环900圈以上,库仑效率为96.7%,大大高于同样条件下测得的Li-CNT复合材料(90.1%)和金属锂片(79.3%)的库仑效率。因此,这种通过简单的熔融浸渍法即可制备的,具有高的比容量和长的循环稳定性的锂硅-碳复合材料具有较大的潜能成为高能量密度电池的负极材料,尤其适用于锂硫、锂氧这种正极不含锂源的电池体系。  相似文献   

16.
Sodium metal anodes have attracted significant attention due to their high specific capacity,low redox potential and abundant resources.However,the dendrites and unstable solid electrolyte interphase(SEI)of sodium anodes restrict the development of sodium metal batteries.This review includes the recent progress on the Na anode protection in sodium metal batteries.The strategies are summarized as modified three-dimensional current collectors,artificial solid electrolyte interphases,and electrolyte modifications.Conclusions and perspectives are envisaged for the further understanding and development of Na metal anodes.  相似文献   

17.
金属锂电池是下一代高能量密度电池体系的代表。然而,高比能金属锂电池的发展受到界面诸多问题的限制,如:金属锂负极枝晶生长、隔膜界面兼容性、正极界面不稳定等,影响了金属锂电池的界面传质传荷过程,并导致金属锂界面环境恶化、电池的容量衰减、安全性能下降等问题。金属有机骨架(MOF)是一种具有稳定多孔结构的有机无机杂化材料,近年来在高比能金属锂电池领域受到广泛关注。其多孔结构与开放的金属位点(OMs)提供了优异的离子电导率,稳定的空间结构提供了较高的机械强度,多样的官能团与金属节点带来丰富的功能性。本文分析了金属锂电池界面的主要挑战,结合金属锂界面的成核模型,总结了MOF及其衍生材料在解决锂金属负极界面、隔膜界面、以及正负极界面稳定性相互作用等方面的研究进展和作用机理,为解决高比能金属锂电池界面失稳问题提供了解决途径,并展望了MOF基材料的设计与发展方向。  相似文献   

18.
利用水热法制备了粒径为90-130 nm的多孔硬碳球, 并通过浸渍与煅烧的方法制备了硬碳球均匀负载纳米氧化镍颗粒(~10 nm)复合材料. 硬碳球的表面官能团和内部的微孔保证了氧化镍颗粒在硬碳上的均匀分布. 在100 mA·g-1的电流密度下, 复合材料电极首次充电比容量高达764 mAh·g-1; 在100 mA·g-1的电流密度下循环100 个周期后电极充电比容量保持在777 mAh·g-1, 容量保持率为101%; 800 mA·g-1电流密度下电极的充电比容量达380 mAh·g-1, 显示复合材料电极具有优异的循环性能和倍率性能. 硬碳的表面官能团和内部微孔为氧化镍提供了优先形核位点, 保证了二者的牢固结合, 使复合材料获得了“协同效应”, 从而使复合电极具备更短的锂离子扩散路径、更高的电导率和更多的锂离子脱嵌位点. 这种方法还可用于制备硬碳/其他金属氧化物复合材料.  相似文献   

19.
金属锂因其具有极高的理论容量(3860 mAh·g?1)、最低的电极电位(?3.04 V vs.标准氢电极)和低的密度(0.534 g·cm?3),被认为是最具潜力的负极材料。但循环过程中不可控的枝晶生长及不稳定的固体电解质相界面膜所引起的安全隐患和电池库伦效率低等问题严重阻碍了锂金属负极的发展。通过在电极表面构建人造保护膜可以有效调控锂离子沉积行为,因此人造保护膜的构建是一种简单高效抑制锂枝晶生长的策略。本综述将从聚合物保护膜、无机保护膜、有机-无机复合保护膜和合金保护膜总结了人造保护膜的构建方法、抑制锂枝晶生长机理,为促进高比能锂金属电池的商业化应用提供借鉴参考作用。  相似文献   

20.
锂金属具有理论比容量高、电位低等优点,被认为是电极中的“圣杯”。然而,锂金属负极在循环过程当中存在着不可控的枝晶生长、体积膨胀等问题,严重地阻碍了锂金属电池的商业化进程。本综述首先概述了锂枝晶的形成机理,然后对由小及大,自内而外,总结了近年来三种不同层次的锂金属电池复合负极:锂金属负极内部结构的复合、锂金属电池内部结构的复合以及锂金属电池内部环境与外界操作条件的复合。最后,本综述对未来多层次锂金属电池复合负极的前景做出了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号