首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The complexation reactions between Ag+, Hg2+ and Pb2+ metal cations with aza-18-crown-6 (A18C6) were studied in dimethylsulfoxide (DMSO)–water (H2O) binary mixtures at different temperatures using the conductometric method. The conductance data show that the stoichiometry of the complexes in most cases is 1:1(ML), but in some cases 1:2 (ML2) complexes are formed in solutions. A non-linear behaviour was observed for the variation of log K f of the complexes vs. the composition of the binary mixed solvents. Selectivity of A18C6 for Ag+, Hg2+ and Pb2+ cations is sensitive to the solvent composition and in some cases and in certain compositions of the mixed solvent systems, the selectivity order is changed. The values of thermodynamic parameters (ΔH co, ΔS co) for formation of A18C6–Ag+, A18C6–Hg2+ and A18C6–Pb2+ complexes in DMSO–H2O binary systems were obtained from temperature dependence of stability constants and the results show that the thermodynamics of complexation reactions is affected by the nature and composition of the mixed solvents.  相似文献   

2.
A single phase of monoclinic MnV2O6 nanoflakes was prepared by a hydrothermal process at 180°C for 18 h, using Mn (CH3COO)2·4H2O and NH4VO3 as starting materials and using acetic acid to adjust the pH value of the reaction solution. The as-prepared samples were characterized by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). X-ray photoelectron spectrum (XPS) measurements further confirm the component of MnV2O6. Results indicated that the products consisted of a large quantity of compact accumulated nanoflakes, with average width of 0.85 μm, thickness of 100 nm and lengths up to 1.7 μm. __________ Translated from Journal of Inorganic Materials, 2007, 22(6): 1139–1141 [译自: 无机材料学报]  相似文献   

3.
A number of samples of sodium and silver phosphate glasses doped with various compositions of some transition metals viz. iron, manganese and zinc chlorides alongwith undoped samples of sodium and silver phosphate glasses were synthesized and characterized by X-ray diffraction, IR spectral, electrical conductivity and differential scanning calorimetry (DSC). The glass transition temperature (T g) and crystallization temperature (T c) values obtained from DSC curves were found to increase with increasing concentration of the dopant Fe/Mn/Zn chlorides in both sodium and silver phosphate glasses and the following sequence is observed: T g(–FeCl3)>T g(–MnCl2)>T g(–ZnCl2) T c(–FeCl3)>T c(–MnCl2)>T c(–ZnCl2) The increase in T g and T c values indicate enhanced chemical durability of the doped glasses. The electrical conductivity values and the results of FTIR spectral studies have been correlated with the structural changes in the glass matrix by the addition of different transition metal cations as dopants.  相似文献   

4.
The structure, thermal expansion coefficient, and electroconductivity of YBa2(Cu1−x Al x )3O6+δ (x = 0.0–0.9) were studied at 20 to 900°C in air. The most conducting compositions of YBa2(Cu1−x Me x )3O6+δ (Me = Al, Co, Fe) were determined. The electrochemical activity of electrodes with the most conducting compositions of YBa2(Cu1−x Me x )3O6+δ (Me = Al, Co, Fe) was studied in a wide polarization range in the contact with 0.9ZrO2 + 0.1Y2O3 solid electrolyte in air at the temperatures of 700 to 900°C. Original Russian Text ? V.K. Gil’derman, I.D. Remez, 2009, published in Elektrokhimiya, 2009, Vol. 45, No. 5, pp. 612–615. Published by report at IX Conference “Fundamental Problems of Solid State Ionics”, Chernogolovka, 2008.  相似文献   

5.
The possibility of hydrogen transfer from hydrofullerene C60H36 to electrogenerated radical anion C60 .− or dianion C60 2− in propylene carbonate-toluence (3∶2, v/v) was demonstrated by cyclic voltammetry. The process affords C60H2 as the product. The reaction found is the typical redox-induced process. Translated fromIzvestiya Akodemii Nauk. Seriya Khimicheskaya, No. 6, pp. 1136–1139, June, 1998.  相似文献   

6.
SrSnO3–δ, prepared in sealed ampoules, crystallizes in the perovskite structure. The band gap is directly allowed at 3.93 eV. The conductivity was found to change markedly and occurs by polaron hopping with activation energy of 0.22 eV. The thermal variation of the thermopower indicates an electron mobility μe 300K = 3.15∙10–6 cm2∙V–1∙s–1), thermally activated. The capacitance measurement shows a linear behavior from which a flat band potential of –0.20 VSCE and an electronic density of 5.56∙1018 cm–3 were determined. The conduction band edge (–4.32 eV/–0.42 VSCE) lies below the H2O/H2 level. Accordingly, SrSnO3–δ can be used for water photoreduction when combined with the delafossite CuFeO2 as sensitizer. Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 45, No. 3, pp. 160-166, May-June, 2009.  相似文献   

7.
Euchrenone a2 (7) isolated from the roots ofEuchresta japonica has been synthesised from 3-prenylphloroacetophenone (1) by other workers. We carried out its cyclodehydrogenation with dichloro dicyano quinone (DDQ) to obtain 6-acetyl-5,7-dihydroxy-2,2-dimethylchromene (2) which was ethoxymethylated in the 7-position to give 6-acetyl-7-ethoxymethoxy-5-hydroxychromene (3). Chalcone condensation of3 and 4-ethoxymethoxy-3-C-prenylbenzaldehyde (4) gave 4,6′-bisethoxymethoxy-2′-hydroxy-6″, 6″-dimethyl-3-C-prenylpyrano (2″, 3″–4,3) chalcone (5) which cyclised with methanolic sodium acetate to give protected 5,4′-bisethoxymethoxy-6″, 6″-dimethyl-3′-C-prenylpyrano (2″, 3″–7,8) flavanone (6). Deprotection of6 with 4% methanolic HCl yielded (7) with melting point and spectral data identical to that of the natural compound.  相似文献   

8.
The results obtained showed that the addition of small amounts of LiNO3 to the reacting mixed solids, consisting of equimolar proportion of Fe2O3 and basic MgCO3 much enhanced the thermal decomposition of magnesium carbonate. The addition of 12 mol% LiNO3 (6 mol% Li2O) decreased the decomposition temperature of MgCO3 from 525.5 to362°C. MgO underwent solid–solid interaction with Fe2O3 at temperatures starting from800°C yielding MgFe2O4. The amount of ferrite produced increased by increasing the precalcination temperature of the mixed solids. However, the completion of this reaction required prolonged heating at elevated temperature above 1100°C. Doping with Li2O much enhanced the solid–solid interaction between the mixed oxides leading to the formation of MgFe2O4 phase at temperatures starting from 700°C. The addition of 6 mol% Li2O to the mixed solids followed by precalcination at 1050°C for 4 h resulted in complete conversion of the reacting oxides into magnesium ferrite. The heat treatment of pure and doped solids at 900–1050°C effected the disappearance of most of IR transmission bands of the free oxides with subsequent appearance of new bands characteristic for MgFe2O4 structure. The promotion effect of Li2O towards the ferrite formation was attributed to an effective increase in the mobility of the various reacting cations. The activation energy of formation (ΔE) of magnesium ferrite was determined for pure and variously doped solids and the values obtained were 203, 126, 95 and 61 kJ mol−1 for pure mixed solids and those treated with 1.5, 3.0 and 6.0 mol% Li2O, respectively. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
Investigation of RuO2-IrO2-SnO2 thin film evolution   总被引:2,自引:0,他引:2  
The thermal evolution process of RuO2–IrO2–SnO2 mixed oxide thin films of varying noble metal contents has been investigated under in situ conditions by thermogravimetry-mass spectrometry (TG-MS), infrared emission spectroscopy (IR) and cyclic voltammetry (CV). The gel-like films prepared from aqueous solutions of the precursor compounds RuOHCl3, H2IrCl6 and Sn(OH)2(CH3COO)2–xClx on titanium metal support were heated in an atmosphere containing 20% O2 and 80% Ar up to 600°C. Chlorine evolution takes place in a single step between 320 and 500°C accompanied with the decomposition of the acetate ligand. The decomposition of surface species formed like carbonyls, carboxylates and carbonates occurs in two stages between 200 and 500°C. The temperature of chlorine evolution and that of the final film formation increases with the increase of the iridium content in the films. The anodic peak charge shows a maximum value at 18% iridium content.  相似文献   

10.
Nanotube Li-Ti-O compound with high surface (198.6 m2·g−1) was prepared by a method involving the treatment of nanotube Na2Ti2O5·H2O in molten LiNO3 and characterization by means of transmission electron microscopy (TEM), energy-dispersive spectra (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and thermogravimetry-differential thermal analysis (TG/DTG). Results show that the nanotube Li-Ti-O compound prepared by this method involves two crystal phases: spinel Li2Ti2O4 and anatase LixTiO2 (x < 0.1). Li+ exhibits different Li1s binding energy in the two crystal phases. In ambient air, the Li-Ti-O compound adsorbs water easily, and the chemically adsorbed water is difficult to remove below 400°C. Translated from Chinese Journal of Inorganic Chemistry, 2006, 22(12): 2135–2139 [译自: 无机化学学报]  相似文献   

11.
Ab initio MP2/6-31G*//HF/6-31G*+ZPE(HF/6-31G*) calculations of the potential energy surface in the vicinity of stationary points and the pathways of intramolecular rearrangements between low-lying structures of the OBe3F3 + cation detected in the mass spectra of μ4-Be4O(CF3COO)6 were carried out. Ten stable isomers with di- and tricoordinate oxygen atoms were localized. The relative energies of six structures lie in the range 0–8 kcal mol−1 and those of the remaining four structures lie in the range 20–40 kcal mol−1. Two most favorable isomers, aC 2v isomer with a dicoordinate oxygen atom, planar six-membered cycle, and one terminal fluorine atom and a pyramidalC 3v isomer with a tricoordinate oxygen atom and three bridging fluorine atoms, are almost degenerate in energy. The barriers to rearrangements with the breaking of one fluorine bridge are no higher than 4 kcal mol−1, except for the pyramidalC 3v isomer (∼16 kcal mol−1). On the contrary, rearrangements with the breaking of the O−Be bond occur with overcoming of a high energy barrier (∼24 kcal mol−1). A planarD 3h isomer with a tricoordinate oxygen atom and linear O−Be−H fragments was found to be the most favorable for the OBe3H3 + cation, a hydride analog of the OBe3F3 + ion; the energies of the remaining five isomers are more than 25 kcal mol−1 higher. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 420–430, March, 1999.  相似文献   

12.
We have been exploring the utilization of supported ceria and ceria–zirconia nano-oxides for different catalytic applications. In this comprehensive investigation, a series of Ce x Zr1−x O2/Al2O3, Ce x Zr1−x O2/SiO2 and Ce x Zr1−x O2/TiO2 composite oxide catalysts were synthesized and subjected to thermal treatments from 773 to 1073 K to examine the influence of support on thermal stability, textural properties and catalytic activity of the ceria–zirconia solid solutions. The physicochemical characterization studies were performed using X-ray diffraction (XRD), Raman spectroscopy (RS), X-ray photoelectron spectroscopy (XPS), and high-resolution transmission electron microscopy (HREM), thermogravimetry and BET surface area methods. To evaluate the catalytic properties, oxygen storage/release capacity (OSC) and CO oxidation activity measurements were carried out. The XRD analyses revealed the formation of Ce0.75Zr0.25O2, Ce0.6Zr0.4O2, Ce0.16Zr0.84O2 and Ce0.5Zr0.5O2 phases depending on the nature of support and calcination temperature employed. Raman spectroscopy measurements in corroboration with XRD results suggested enrichment of zirconium in the Ce x Zr1−x O2 solid solutions with increasing calcination temperature thereby resulting in the formation of oxygen vacancies, lattice defects and oxygen ion displacement from the ideal cubic lattice positions. The HREM results indicated a well-dispersed cubic Ce x Zr1−x O2 phase of the size around 5 nm over all supports at 773 K and there was no appreciable increase in the size after treatment at 1073 K. The XPS studies revealed the presence of cerium in both Ce4+ and Ce3+ oxidation states in different proportions depending on the nature of support and the treatment temperature applied. All characterization techniques indicated absence of pure ZrO2 and crystalline inactive phases between Ce–Al, Ce–Si and Ce–Ti oxides. Among the three supports employed, silica was found to stabilize more effectively the nanosized Ce x Zr1−x O2 oxides by retarding the sintering phenomenon during high temperature treatments, followed by alumina and titania. Interestingly, the alumina supported samples exhibited highest OSC and CO oxidation activity followed by titania and silica. Details of these findings are consolidated in this review.  相似文献   

13.
以双季铵盐表面活性剂为模板剂,水热条件下合成了硅铝比(nSi/nAl)为18、26和95的ZSM-5沸石纳米片,采用离子交换方法制备了铜改性的ZSM-5纳米片样品,并测试了其催化分解N_2O性能。结合X射线衍射(XRD)、N_2吸附/脱附、X射线荧光光谱(XRF)、扫描电镜(SEM)、透射电镜(TEM)、氢气程序升温还原(H_2-TPR)、氧气程序升温脱附(O_2-TPD)和原位红外漫反射光谱(CODRIFT)等表征结果 ,探讨了沸石硅铝比对于催化剂N_2O分解性能的影响及其原因。结果表明,ZSM-5纳米片硅铝比越低,CuZSM-5纳米片催化剂的活性越高。催化活性的提高归因于低硅铝比催化剂上Cu~+活性物种可还原性的增强和吸附氧脱附能力的提高。  相似文献   

14.
Summary. The textural characteristics, including surface area, mean pore diameters, and total pore volume of Cr2O3–CuO/Al2O3 solid catalysts were determined from the low temperature adsorption of N2 at 77 K. The structural properties were investigated using XRD. The surface acidity of calcined samples was determined using two comparable methods, including the non-aqueous titration of acidic groups with n-butylamine and dehydration/dehydrogenation activity of cyclohexanol. XRD patterns assigned a crystalline CuO and γ-Al2O3 for 723 K calcinations products of lower Cr2O3 content. The gradual increase of calcinations temperature promoted the crystallinity of Cr2O3 and resulted in solid–solid interaction of CuO and Cr2O3 forming CuCr2O4. The textural parameters varied with both calcinations temperature and catalyst composition. The surface acid density (DAS) increased with the increase of chromia content up to 0.132 mole% Cr2O3, while the rise of calcinations temperature led to a decrease of surface acidity. The dehydration/dehydrogenation of cyclohexanol as well as n-butylamine titration succeeded in characterizing of surface acidity. Present address: Chemistry Department, College of Science, King Faisal University, Al-Hofuf 31982, Saudi Arabia  相似文献   

15.
DTA and XRD studies of the Fe2V4O13–Cr2V4 O13 system have shown that continuous solid solutions of a Fe2–xCrxV4O13 type, bearing a Fe2 V4 O13 structure, are formed in the system. With the increasing degree of the Cr3+ ion incorporation into the Fe2 V4 O13 structure, a contraction of the solid solution crystal lattice develops. Solid solutions of a Fe2–x Crx V4 O13 type melt incongruently, their melting temperature increasing from 953 to 1003 K with increase in the degree of the Cr3+ ion incorporation. The solid product of melting Fe2–x Crx V4 O13 solid solutions for 0.2<x >1.2 is the Fe1–x Crx VO4 solution phase, and for x ≤0.2 and x ≥1.4 – the Fe1–x Crx VO4 phase as well as FeVO4 or CrVO4 , respectively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
The sample of LiCoO2 was synthesized, and the heat capacity was measured by adiabatic calorimetry between 13 and 300 K. The smoothed values of the heat capacity were calculated from the data. The thermodynamic functions, standard enthalpy, entropy and Gibbs energy, of LiCoO2 were calculated from the heat capacity and the numerical values are tabulated at selected temperatures from 15 to 300 K. The heat capacity, enthalpy, entropy, and Gibbs energy at T=298.15 K are 71.57 J K–1mol–1, 9.853 kJ mol–1, 52.45 J K–1 mol–1, –5.786 kJ mol–1, respectively. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
TiO2–SiO2 composite nanoparticles were prepared by a sol–gel process. To obtain the assembly of TiO2–SiO2 composite nanoparticles, different molar ratios of Ti/Si were investigated. Polyurethane (PU)/(TiO2–SiO2) hybrid films were synthesized using the “grafting from” technique by incorporation of modified TiO2–SiO2 composite nanoparticles building blocks into PU matrix. Firstly, 3-aminopropyltriethysilane was employed to encapsulate TiO2–SiO2 composite nanoparticles’ surface. Secondly, the PU shell was tethered to the TiO2–SiO2 core surface via surface functionalized reaction. The particle size of TiO2–SiO2 composite sol was performed on dynamic light scattering, and the microstructure was characterized by X-ray diffraction and Fourier transform infrared. Thermogravimetric analysis and transmission electron microscopy (TEM) employed to study the hybrid films. The average particle size of the TiO2–SiO2 composite particles is about 38 nm when the molar ratio of Ti/Si reaches to1:1. The TEM image indicates that TiO2–SiO2 composite nanoparticles are well dispersed in the PU matrix.  相似文献   

18.
The electronic state of platinum supported on SO4/ZrO2, SO4/TiO2, SO4/Al2O3, and SO4/SiO2 systems and on systems unpromoted by sulfur was investigated by diffuse-reflectance IR spectroscopy using CO as the probe molecule. The introduction of SO4 2− anions increases the electron deficit on platinum particles. This suppresses the formation of bridging CO complexes with the metal, leads to the high-frequency shift of absorption maxima of CO adsorbed in the linear form, and stabilizes positively charged metal species (Ptδ+ and Pt+) during the reduction process. The formation of the positively charged species includes the interaction between the acidic protons and the metal particles yielding [Pt−H]δ+ adducts. The extent of the influence of the support on the electronic state of the metal increases in the series SO4/SiO2<SO4/Al2O3<SO4/TiO2<SO4/ZrO2 in parallel with an increase in the strength of the acid sites in the system. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1094–1099, June, 1998.  相似文献   

19.
Mixed IrO2–TiO2 oxides were prepared by the sol–gel method upon acid-catalysed hydrolysis of an iridium solution in ethanol mixed with titanium tetraethoxide in ethanol. The iridium solution was obtained by reaction of the sodium hexachloroiridate(IV) precursor in the presence of sodium ethoxide in ethanol. Gels were formed in all but the high-Ir samples. Analysis of the dried gels showed minority-phase enrichment at the surface and the presence of Ir(III), while microscopy showed evidence for dispersed iridium-containing nanoparticles (1–20 nm in diameter). XRD powder patterns of the calcined material showed peaks due to a small amount of crystalline NaCl impurity which could be removed by washing. This left amorphous phases, except in the Ir:Ti 3:2 case, which showed evidence for the presence of separate crystalline oxide phases: anatase, IrO2 and Ti x Ir1−x O2.  相似文献   

20.
Cyclopentane is converted into a mixture of cyclohexanes, decalins, and adamantanes (and isomeric cycloalkanes) in overall yields of 18–31% (w/w) under the action of superelectrophilic complex CBr4·2AlBr3 either in CH2X2 (X=Br, Cl) or without a solvent at 20°C. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2304–2309, December, 1999.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号