首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
This article presents an analytical review of the author’s results and the literature concerning the nature of species resulting from NO and CO adsorption on the unreconstructed (1 × 1) and reconstructed hexagonal (hex) Pt(100) surfaces, including specific features of the reactions between these species. At 300 K, both surfaces adsorb NO and CO mainly in their molecular states. When adsorbed on Pt(100)-1 × 1, the NOads and COads molecules are uniformly distributed on the surface. Under the same conditions, the hexagonal surface undergoes adsorption-induced reconstruction with the formation of NOads/1 × 1 and COads/1 × 1 islands, which are areas of the unreconstructed phase saturated with adsorbed molecules and surrounded with the adsorbate-free hex phase. In adsorption on structurally heterogeneous surfaces containing both hex and 1 × 1 areas, the 1 × 1 and hex phases are occupied in succession, the latter undergoing reconstruction into the 1 × 1 phase. The reaction between NO and CO on the unreconstructed surfaces occurs even at room temperature and results in the formation of N2 and CO2 in quantitative yield. On the hexagonal surface, a stable layer of adsorbed molecules as (NOads + COads)/1 × 1 mixed islands forms under these conditions. Above 350 K, the reaction in the mixed islands is initiated by the desorption of small amounts of the initial compounds, and this is followed by rapid self-acceleration leading to a surface explosion yielding N2, CO2, and N2O (minor product). These products show themselves as very narrow desorption peaks in the temperature-programmed reaction spectrum.  相似文献   

2.
High resolution electron energy loss spectroscopy (HREELS), temperature-programmed desorption (TPD) and temperature-programmed reaction (TPR) were used to study NO adsorption and the reactivity of COads and NOads molecules on Pd(110) and Pt(100) single crystal surfaces. Compared to the Pt(100)-(1 × 1) surface, the unreconstructed Pt(100)-hex surface is chemically inert toward NO dissociation into Nads and Oads atoms. When a mixed adsorbed COads + NOads layer is heated, a so-called surface explosion is observed when the reaction products (N2, CO2, and N2O) synchronously desorb in the form of sharp peaks with a half-width of 7-20 K. The shape specificity of TPR spectra suggests that the vacancy mechanism consists of the autocatalytic character of the reaction initiated by the formation an initial concentration of active sites due to partial desorption of molecules from the COads + NOads layer upon heating to high temperatures. Kinetic experiments carried out on the Pd(110) surface at a constant reaction pressure and a linear increase in the temperature confirm the explosive mechanism of the reaction NO + CO.  相似文献   

3.
The observed isotopic effect in CO2 + Hads reaction showed that at 0.05 V the rate determining step is
formation whereas at 0.2 V the reorientation of adsorbed intermediate:
is probably the slowest step of reaction. The oxidation of adsorbed product is slower in D2SO4 than H2SO4 solution like the surface oxidation of platinum. The rate determining step of COOHads oxidation is a reaction with OHads.  相似文献   

4.
The interaction of hydrogen with NOads/1 × 1 islands produced by NO adsorption on the reconstructed surface Pt(100)-hex was studied by high-resolution electron energy loss spectroscopy (HREELS) and the temperature-programmed reaction (TPR) method. The islands are areas of the unreconstructed surface Pt(100)-1 × 1 saturated with NOads molecules. The hexagonal phase around these islands adsorbs much more hydrogen near room temperature than does the clean Pt(100)-hex surface. It is assumed that hydrogen is adsorbed on the hexagonal surface areas that are adjacent to, and are modified by, the NOads/1 × 1 islands. The reaction of adsorbed hydrogen atoms with NOads takes place upon heating and has the character of so-called surface explosion. The TPR peaks of the products of this reaction—nitrogen and water—occur at T des ~ 365–370 K, their full width at half-maximum being ~5–10 K. In the case of the NOads/1 × 1 islands preactivated by heating in vacuo above the NO desorption onset temperature (375–425 K), after the admission of hydrogen at 300 K, the reaction proceeds in an autocatalytic regime and the product formation rate increases monotonically at its initial stage. In the case of activation at 375 K, during the initial, slow stage of the reaction (induction period), hydrogen reacts with nitric oxide molecules bound to structure defects (NOdef). After activation at 425 K, the induction period is characterized by the formation and consumption of imido species (NHads). It is assumed that NHads formation involves Nads atoms that have resulted from NOads dissociation on defects upon thermal activation. The induction period is followed by a rapid stage of the reaction, during which hydrogen reacts with NO1 × 1 molecules adsorbed on 1 × 1 areas, irrespective of the activation temperature. After the completion of the reaction, the areas of the unreconstructed phase 1 × 1 are saturated with adsorbed hydrogen. The formation of Hads is accompanied by the formation of a small amount of amino species (NH2ads).  相似文献   

5.
The mechanism of catalytic CO oxidation on Pt(100) and Pd(110) single-crystal surfaces and on Pt and Pd sharp tip (~103 Å) surfaces has been studied experimentally by temperature-programmed reaction, temperature desorption spectroscopy, field electron microscopy, and molecular beam techniques. Using the density functional theory the equilibrium states and stretching vibrations of oxygen atoms adsorbed on the Pt(100) surface have been calculated. The character of the mixed adsorption layer was established by high resolution electron energy loss spectroscopy—molecular adsorption (O2ads, COads) on Pt(100)-hex and dissociative adsorption (Oads, COads) on Pt(100)-(1×1). The origin of kinetic self-oscillations for the isothermal oxidation of CO in situ was studied in detail on the Pt and Pd tips by field electron microscopy. The initiating role of the reversible phase transition (hex) ? (1 × 1) of the Pt(100) nanoplane in the generation of regular chemical waves was established. The origination of self-oscillations and waves on the Pt(100) nanoplane was shown to be caused by the spontaneous periodical transition of the metal from the low-active state (hex) to the highly active catalytic state (1 × 1). A relationship between the reactivity of oxygen atoms (Oads) and the concentration of COads molecules was revealed for the Pd(110) surface. Studies using the isotope label 18Oads demonstrated that the low-temperature formation of CO2 at 150 K is a result of the reaction of CO with the highly reactive state of atomic oxygen (Oads). The possibility of the low-temperature oxidation of CO via interaction with the so-called “hot” oxygen atoms (Ohot) appearing on the surface at the instant of dissociation of O2ads molecules was studied by the molecular beam techniques.  相似文献   

6.
CO oxidation on Pt(l00) is studied by the Monte Carlo method using a model that accounts for the phase transition (lxl) ai (hex). The influence of surface diffusion of COads on the velocity of wave propagation of Oads and COads and the distribution of the species in the reaction zone is studied Deceased.  相似文献   

7.
The study revealed additional channels of inelastic electron scattering, which accompany the threshold excitation of the substrate Pt4d level — ionization of the valent states of adsorbed particles chemically bonded to the excited atom, and excitation of the surface plasmon vibrations. The conjugate excitation of this type shows up as a series of typical satellites in the spectra of disappearance potentials, which reflects the structure of valent states of adsorbed particles. Analysis of the satellite structure revealed the intermediate formation of NH x,ads particles in the reaction NOgas + Hads on the surface of Pt(100) single crystal and, taking into account the earlier data, made it possible to formulate a general mechanism of selfoscillations in the NO + H2 reaction on platinum metals. Mathematical modeling of reaction kinetics on the Pt(100) surface within the suggested mechanism demonstrated the presence of regular self-oscillations of the reaction rate at invariable values of the step constants.  相似文献   

8.
Silica dissolution-redeposition phenomenon is investigated on a microscopic scale using Small Angle Xray Scattering (SAXS) method. The changes occurring in the microtexture are different according to the procedure used to dry the gels. A xerogel, a CO2 supercritically dried aerogel and an alcohol supercritically dried aerogel were compared. Silica does not dissolve in CO2 supercritical. The transformation of heat treated gels into CO2 supercritically dried aerogels is demonstrated as having minor effect on the microtexture. SAXS data show oscillations around Porod law I(Q) Q –4 where Q is the wave vector. The oscillations are more pronounced for alcohol dried aerogel than for xerogel or CO2 dried aerogel. These oscillations are related to curvatures of the surface i.e. the surface roughness. It was found that according to silica dissolution extent, the solid network surface was continuously smoothened in alcohol supercritically dried aerogel. The average chord length of the solid phase is shifted to larger values while the distribution seems to be more narrow. This effect does not give rise to the formation of closed pores.  相似文献   

9.
The reactions of oxidized and reduced 6 wt % NiO/-Al2O3 with H2, CH4, CO2, O2, and their mixtures are studied in flow and pulse regimes using a setup equipped with a differential scanning calorimeter DSC-111 and a system for chromatographic analysis. It is shown that treatment with hydrogen at 700° results in the partial reduction of NiO to Ni. Methane practically does not react with oxidized Ni/-Al2O3 but it does react actively with the reduced catalyst to form H2 and surface carbon. The latter is capable of reacting with lattice oxygen of Ni/-Al2O3 (slowly) and with adsorbed oxygen (rapidly). Carbon dioxide also reacts with surface carbon to form CO (rapidly) and with metallic Ni to yield CO and NiO (slowly). Thus, the main route of methane reforming with carbon dioxide on Ni/-Al2O3 is the dissociative adsorption of CH4 to form surface carbon and H2 and the reaction of this carbon with CO2 resulting in the formation of CO by the reverse Boudouard reaction. Side routes are the interaction of the products of methane chemisorption with catalyst oxygen and the dissociative adsorption of CO2 on metallic nickel. A competitive reaction of surface carbon with adsorbed oxygen results in a decrease in the CO2 conversion in methane reforming with carbon dioxide. Therefore, the presence of gaseous oxygen in the reacting mixture decelerates methane reforming (catalyst poisoning by oxygen).  相似文献   

10.
The homotopic method has been used to analyze the kinetic models of CO oxidation on two surface patches conjugated by COads spillover. On each patch reaction proceeds via a three-stage mechanism but with different constants. The stability of steady-states solution has been studied. COads spillover from one patch to another changes substantially the bifurcation picture of steady states and produces islands.  相似文献   

11.
Theoretical studies of the spatiotemporal dynamics of CO oxidation on Pt(100) and Pd(110) single crystal surfaces have been carried out by the kinetic Monte Carlo method. For both surfaces, Monte Carlo simulation has revealed oscillations of the CO2 formation rate and of the concentrations of adsorbed species. The oscillations are accompanied by wave processes on the model surface. Simulations have demonstrated that there is a narrow reaction zone when an oxygen wave propagates over the surface. The existence of this zone has been confirmed by experimental studies. Taking into account the anisotropy of the Pd(110) crystal has no effect on the oscillation period and amplitude, but leads to the formation of elliptic oxygen patterns on the surface. It is possible to obtain a wide variety of chemical waves (cellular and turbulent structures, spirals, rings, and strips) by varying the parameters of the computational experiment.  相似文献   

12.
The geometry, electronic structure, and catalytic properties of nitrogen‐ and phosphorus‐doped graphene (N‐/P‐graphene) are investigated by density functional theory calculations. The reaction between adsorbed O2 and CO molecules on N‐ and P‐graphene is comparably studied via Langmuir–Hinshelwood (LH) and Eley–Rideal (ER) mechanisms. The results indicate that a two‐step process can occur, namely, CO+O2→CO2+Oads and CO+Oads→CO2. The calculated energy barriers of the first step are 15.8 and 12.4 kcal mol?1 for N‐ and P‐graphene, respectively. The second step of the oxidation reaction on N‐graphene proceeds with an energy barrier of about 4 kcal mol?1. It is noteworthy that this reaction step was not observed on P‐graphene because of the strong binding of Oads species on the P atoms. Thus, it can be concluded that low‐cost N‐graphene can be used as a promising green catalyst for low‐temperature CO oxidation.  相似文献   

13.
Variations of potential E in time , observed during the carbon monoxide interaction with preliminarily-adsorbed oxygen Oads on smooth and platinized platinum electrodes under open-circuit conditions (supporting electrolyte 0.5 M H2SO4), are measured. The potential decay rate on smooth Pt is more than ten times that on Pt/Pt; there are some differences in the transients as well. The obtained data suggest that CO interacts with Oads on smooth Pt and Pt/Pt via different mechanisms. Two models for the process on smooth platinum are considered. In one model, the interaction of Oads with CO from solution is accepted as the rate-determining step; in the other, the interaction of Oads with COads. A comparison of theoretical E vs. dependences with experimental data using the MathCad program suggests that CO interacts with Oads via both mechanisms.  相似文献   

14.
The volume stages of ethylene glycol oxidation to glyoxal on silver have been studied by varying the catalyst grain size. Temperature oscillations have been detected in the catalyst layer. The nature of the oscillations and the range of their generation were investigated by varying the oxygen, ethylene glycol and water vapor contents in the reaction mixture. Glyoxal formation was shown to occur on the silver catalyst surface. The generation of oscillations is responsible for the CO to CO2 oxidation in the volume between the catalyst grains.  相似文献   

15.
Neutralization of the positive charge of the pyridinium cation (Pyr+)ads adsorbed at the mercury/water interface following electrochemical reduction is likely to provoke a very fast flat-to-perpendicular reorientation of the adsorbed species, thus rendering the perpendicularly adsorbed radical (Pyr)ads electrochemically inactive. Therefore, it cannot be ascertained by means of cyclic voltammetry whether dimerization of the (Pyr)ads radicals, which occurs in solution, also occurs at the mercury/water interface.  相似文献   

16.
The state of surface Pt atoms in the Pt/SO4/ZrO2/Al2O3 catalyst and the effect of the state of platinum on its adsorption and catalytic properties in the reaction of n-hexane isomerization were studied. The Pt-X/Al2O3 alumina-platinum catalysts modified with various halogens (X = Br, Cl, and F) and their mechanical mixtures with the SO4/ZrO2/Al2O3 superacid catalyst were used in this study. With the use of IR spectroscopy (COads), oxygen chemisorption, and oxygen-hydrogen titration, it was found that ionic platinum species were present on the reduced form of the catalysts. These species can adsorb to three hydrogen atoms per each surface platinum atom. The specific properties of ionic platinum manifested themselves in the formation of a hydride form of adsorbed hydrogen. It is believed that the catalytic activity and operational stability of the superacid system based on sulfated zirconium dioxide were due to the participation of ionic and metallic platinum in the activation of hydrogen for the reaction of n-hexane isomerization.  相似文献   

17.
This paper presents investigations of phase and structural transitions occurring in water adsorbed on the surface of bovine serum albumin (BSA) and on the so-called intelligentrs or smart silica gel surface covered with a chemically bonded BSA phase. Cyclic changes of heat flow (HF) were observed in the samples studied during cooling and heating of the measuring cell of the differential scanning calorimetry (DSC) apparatus. These cyclic changes reflect structural transitions occurring in the water adsorbed on the surface at subambient and elevated temperatures. This is connected with cyclic changes (decay and reproduction) of ice-like structures existing in the adsorbed water layers. On the basis of quantitative investigations it appears that, depending on the direction of the cooling or heating process of the samples studied, the number of ice-like water structures in the surface film increases or decreases. It has been stated that the observed fluctuations occur spontaneously and suddenly in the whole volume of adsorbed water in different and not regular temperature ranges, especially at the paradoxical effect temperatures.Support from the Research Council (Dr. R. K. Gilpin and Dr. M. Jaroniec) of Kent State University (Ohio, USA) is acknowledged. The author thanks Dr. V. Tittlebach for providing the samples of pure BSA and silica gel with chemically, bonded BSA phase.  相似文献   

18.
Summary Zirconia-supported hydrogenation catalysts were obtained by activation of the amorphous precursors Cu70Zr30 and Pd25Zr75 under CO2 hydrogenation conditions. Catalysts of comparable compositions prepared by co-precipitation and wet impregnation of zirconia with copper- and palladium salts, respectively, served as reference materials. The catalyst surfaces under reaction conditions were investigated by diffuse reflectance FTIR spectroscopy. Carbonates, formate, formaldehyde, methylate and methanol were identified as the pivotal surface species. The appearance and surface concentrations of these species were correlated with the presence of CO2 and CO as reactant gases, and with the formation of either methane or methanol as reaction products. Two major pathways have been identified from the experimental results. i) The reaction of CO2/H2-mixtures on Cu/zirconia and Pd/zirconia primarily yields surface formate, which is hydrogenated to methane without further observable intermediates. ii) The catalytic reaction between CO and hydrogen yields -bonded formaldehyde, which is subsequently reduced to methylate and methanol. Interestingly, there is no observable correlation between absorbed formaldehyde or methylate on the one hand, and gas phase methane on the other hand. The reactants, CO2 and CO, can be interconverted catalytically by the water gas shift reaction. The influence of the metals on this system of coupled reactions gives rise to different product selectivities in CO2 hydrogenation reactions. On zirconia-supported palladium catalysts, surface formate is efficiently reduced to methane, which consequently appears to be the principal CO2 hydrogenation product. In contrast, there is a favorable reaction pathway on copper in which CO is reduced to methanol without C-O bond cleavage; surface formate does not participate significantly in this reaction. In CO2 hydrogenations on copper/zirconia, methanol can be obtained as the main product, from a sequence of the reverse water gas shift reaction followed by CO reduction.  相似文献   

19.
Areas of occurrence and character of autooscillations during CO oxidation on a non-uniform surface consisting of different sites M1 and M2, the reaction on which is kinetically connected by the diffusion of adsorbed CO (COads), has been analyzed using numerical integration of an independent system and search of stationary solutions by the homotopy method.  相似文献   

20.
The states of supported vanadium and the nature of activation of ammonia adsorbed on vanadium sites of V x /Ti2 catalysts are studied by 51V NMR spectroscopy and diffuse-reflectance IR Fourier-transform (DRIFT) spectroscopy using cluster quantum chemical calculations of N3 adsorption. We employ the V x /Ti2 catalyst of two types: the monolayer catalyst in which vanadium is located on the surface of well-crystallized anatase and the catalyst in which vanadium embedded in the anatase lattice at a rather great depth. It is shown that ammonia is predominantly adsorbed on Lewis acid sites of the monolayer catalyst, whereas most of N3 adsorbed on the catalyst containing bulk vanadium is in the form of ammonium ions. Analysis of experimental and calculated data suggests that, in the monolayer catalyst, N3 molecules in the selective reduction of nitrogen oxides are activated on Lewis acid sites. Ammonia activation involves the dissociation of the N–H bond in a coordinated molecule, which results in the formation of the amide V–N2 group and a water molecule coordinated by a V5+ ion. It is likely that, in the case of the catalyst containing bulk vanadium, this reaction occurs with the predominant participation of ammonium ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号