首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Owing to their applications in biodetection and molecular bioimaging, near‐infrared (NIR) fluorescent dyes are being extensively investigated. Most of the existing NIR dyes exhibit poor quantum yield, which hinders their translation to preclinical and clinical settings. Plasmonic nanostructures are known to act as tiny antennae for efficiently focusing the electromagnetic field into nanoscale volumes. The fluorescence emission from NIR dyes can be enhanced by more than thousand times by precisely placing them in proximity to gold nanorods. We have employed polyelectrolyte multilayers fabricated using layer‐by‐layer assembly as dielectric spacers for precisely tuning the distance between gold nanorods and NIR dyes. The aspect ratio of the gold nanorods was tuned to match the longitudinal localized surface plasmon resonance wavelength with the absorption maximum of the NIR dye to maximize the plasmonically enhanced fluorescence. The design criteria derived from this study lays the groundwork for ultrabright fluorescence bullets for in vitro and in vivo molecular bioimaging.  相似文献   

2.
The shape anisotropy of nanorods gives rise to two distinct orientational modes by which nanorods can be assembled, i.e., end-to-end and side-by-side, analogous to the well-known H and J aggregation in organic chromophores. Optical absorption spectra of gold nanorods have earlier been observed to show a red-shift of the longitudinal plasmon band for the end-to-end linkage of nanorods, resulting from the plasmon coupling between neighboring nanoparticles, similar to the assembly of gold nanospheres. We observe, however, that side-by-side linkage of nanorods in solution shows a blue-shift of the longitudinal plasmon band and a red-shift of the transverse plasmon band. Optical spectra calculated using the discrete dipole approximation method were used to simulate plasmon coupling in assembled nanorod dimers. The longitudinal plasmon band is found to shift to lower energies for end-to-end assembly, but a shift to higher energies is found for the side-by-side orientation, in agreement with the optical absorption experiments. The strength of plasmon coupling was seen to increase with decreasing internanorod distance and an increase in the number of interacting nanorods. For both side-by-side and end-to-end assemblies, the strength of the longitudinal plasmon coupling increases with increasing nanorod aspect ratio as a result of the increasing dipole moment of the longitudinal plasmon. For both the side-by-side and end-to-end orientation, the simulation of a dimer of nanorods having dissimilar aspect ratios showed a longitudinal plasmon resonance with both a blue-shifted and a red-shifted component, as a result of symmetry breaking. A similar result is observed for a pair of similar aspect ratio nanorods assembled in a nonparallel orientation. The internanorod plasmon coupling scheme concluded from the experimental results and simulations is found to be qualitatively consistent with the molecular exciton coupling theory, which has been used to describe the optical spectra of H and J aggregates of organic molecules. The coupled nanorod plasmons are also suggested to be electromagnetic analogues of molecular orbitals. Investigation of the plasmon coupling in assembled nanorods is important for the characterization of optical excitations and plasmon propagation in these nanostructures. The surface plasmon resonance shift resulting from nanorod assembly also offers a promising alternative for analyte-sensing assays.  相似文献   

3.
We have investigated optical properties of single gold nanorods by using an apertured-type scanning near-field optical microscope. Near-field transmission spectrum of single gold nanorod shows several longitudinal surface plasmon resonances. Transmission images observed at these resonance wavelengths show oscillating pattern along the long axis of the nanorod. The number of oscillation increases with decrement of observing wavelength. These spatial characteristics were well reproduced by calculated local density-of-states maps and were attributed to spatial characteristics of plasmon modes inside the nanorods. Dispersion relation for plasmons in gold nanorods was obtained by plotting the resonance frequencies of the plasmon modes versus the wave vectors obtained from the transmission images.  相似文献   

4.
We report an enzymatic method to control the plasmon resonance absorbance of gold nanoparticle (AuNP) arrays assembled on hyaluronic acids. While multiple electrostatic interactions between cysteamine on the AuNPs and the carboxylic acid residues in the whole intact hyaluronic acid induced the formation of large aggregates, precise control of the plasmon absorbance was possible by tailoring the size of the bio-polymeric templates with hyaluronidase, almost over the entire range of the resonant coupling wavelengths. It was possible to precisely tune the position of the second plasmon absorbance by manipulating the amount of the template and the enzymatic hydrolysis time. Finally, we were able to produce a chain-like array of AuNPs, which was nearly one dimensional, with a maximum shift of up to 189 nm in the plasmon absorbance at the optimal hydrolysis time of the templates. This enzymatic method can be used as a useful tool to tailor the plasmonic properties of the nanostructures required for specific applications.  相似文献   

5.
Single molecule analysis by surfaced-enhanced Raman scattering   总被引:1,自引:0,他引:1  
Our main objective in this tutorial review is to provide insight into some of the questions surrounding single molecule detection (SMD) using surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS). Discovered thirty years ago, SERS is now a powerful analytical tool, strongly tied to plasmonics, a field that encompasses and profits from the optical enhancement found in nanostructures that support localized plasmon excitations. The spectrum of the single molecule carries the quantum fingerprints of the system modulated by the molecule-nanostructure interactions and the electronic resonances that may result under laser excitation. This information is embedded in vibrational band parameters. The dynamics and the molecular environment will affect the bandwidth of the observed Raman bands. In addition, the localized surface plasmon resonances (LSPR) empower the nanostructure with a number of optical properties that will also leave their mark on the observed inelastic scattering process. Therefore, controlling size, shape and the formation of the aggregation state (or fractality) of certain metallic nanostructures becomes a main task for experimental SERS/SERRS. This molecule-nanostructure coupling may, inevitably, lead to spectral fluctuations, increase photobleaching or photochemistry. An attempt is made here to guide the interpretation of this wealth of information when approaching the single molecule regime.  相似文献   

6.
The optical properties of a photoluminescent dye rhodamine B (RhB) interacting with gold nanoparticles (AuNP) have been investigated using plasmonic absorbance, fluorescence, and resonance elastic light scattering (RELS) spectroscopy. We have found that these interactions result in a multimodal coupling that influence optical transitions in RhB. In absorbance measurements, we have observed for the first time the coupling resulting in strong screening of RhB π-π* transitions, likely caused by a contact adsorption of RhB on a conductive surface of AuNP. The nanoparticles quench also very efficiently the RhB fluorescence. We have determined that the static quenching mechanism with a non-F?rster fluorescence resonance energy transfer (FRET) from RhB molecules to AuNP is involved. The Stern-Volmer dependence F(0)/F = f(Q) shows an upward deviation from linearity, attributed to the ultra-high quenching efficiency of AuNP leading to the new extended Stern-Volmer model. A sharp RELS peak of RhB alone (λ(max) = 566 nm) has been observed for the first time and attributed to the resonance fluorescence and enhanced scattering. This peak is completely quenched in the presence of AuNP(22nm). Our quantum mechanical calculations confirm that the distance between AuNP surface and conjugated π-electron system in RhB is well within the range of plasmonic fields extending from AuNP. The optical transition coupling to plasmonic oscillations and the efficient energy transfer due to the interactions of fluorescent dyes with nanoparticles are important for biophysical studies of life processes and applications in nanomedicine.  相似文献   

7.
Gold nanorods have great potential in a variety of applications because of their unique physical properties. In this article, we present the layer-by-layer (LbL) assembly of thin films containing positively charged gold nanorods that are covalently functionalized by cationic thiol molecules. The cationic gold nanorods are uniformly distributed in ultrathin nanocomposite LbL thin films. We studied the collective surface plasmon resonance coupling in the LbL films via UV-visible spectroscopy and evaluated their application in the surface-enhanced Raman scattering detection of rhodamine 6G probe molecules. Furthermore, we successfully manufactured freestanding nanoscale thin films containing multilayers of gold nanorods with a total thickness of less than 50 nm. The surface morphology and their optical and mechanical properties were systematically investigated, and the polycationic gold nanorods were found to play an important role in manipulating the properties of the nanocomposite thin films. Our findings reveal that such nanorods are excellent building blocks for constructing functional LbL films with tunable plasmonic behavior and robust mechanical properties.  相似文献   

8.
An enhanced sensitive biosensor has been developed to detect biological targets by tailoring the localized surface plasmon resonance property of core–shell gold nanorods. In this new concept, a shell layer is produced on gold nanorods by generating a layer of chalcogenide on the gold nanorod surface after attachment of the recognition reagent, namely, goat IgG and antigen of schistosomiasis japonica. The bioactivity of these attached biomolecules is retained and the sensitivity of this biosensor is thus enhanced significantly. The plasmonic properties of the gold nanorods attached with the biomolecules can be adjusted and the plasmon resonance wavelength can be red-shifted up to several hundred nanometers in the visible or near infrared (NIR) region, which is extremely important to biosensing applications. This leads to a lager red-shift in the localized surface plasmon resonance absorption compared to the original gold nanorod-based sensor and hence offers greatly enhanced sensitivity in the detection of schistosomiasis japonica. The human serum infected with schistosomiasis japonica diluted to 1:50,000 (volume ratio, serum/buffer solution) can be detected readily. The technique offers enhanced sensitivity and can be easily extended to other sensing applications based on not only immuno-recognition but also other types of specific reactions.  相似文献   

9.
Plasmon coupling in layer-by-layer assembled gold nanorod films   总被引:3,自引:0,他引:3  
A systematic study of the optical effects derived from plasmon coupling in mono- and multilayers of gold nanorods is presented. The monolayers were prepared using the standard polyelectrolyte-assisted layer-by-layer (LbL) method and gold nanorods coated with either poly(N-vinyl pyrrolidone) or homogeneous silica shells. Such plasmon coupling leads in general to extensive red-shift and broadening of the longitudinal plasmon bands, which are discussed on the basis of recently reported theoretical modeling. Whereas for PVP-coated rods, strong interactions were observed for high-density monolayers and closely spaced multilayers, increasingly efficient screening is observed for thicker silica shells.  相似文献   

10.
Hu M  Chen J  Li ZY  Au L  Hartland GV  Li X  Marquez M  Xia Y 《Chemical Society reviews》2006,35(11):1084-1094
The surface plasmon resonance peaks of gold nanostructures can be tuned from the visible to the near infrared region by controlling the shape and structure (solid vs. hollow). In this tutorial review we highlight this concept by comparing four typical examples: nanospheres, nanorods, nanoshells, and nanocages. A combination of this optical tunability with the inertness of gold makes gold nanostructures well suited for various biomedical applications.  相似文献   

11.
The strong coupling of porphyrin J‐aggregates to plasmonic nanostructures of different symmetry is investigated. The nanostructures of higher symmetry show the strongest interaction with the molecular layer, suggesting that surface plasmon mode degeneracy plays an important role in the coupling efficiency. At high coupling strengths a new, weakly dispersive mode appears which has recently been predicted theoretically to be due to long‐range energy transfer between molecules mediated by surface plasmons. These findings point to new ways for optimizing strong coupling and thereby realize its full potential for molecular and material science.  相似文献   

12.
Herein, we show that copper nanostructures, if made anisotropic, can exhibit strong surface plasmon resonance comparable to that of gold and silver counterparts in the near‐infrared spectrum. Further, we demonstrate that a robust confined seeded growth strategy allows the production of high‐quality samples with excellent control over their size, morphology, and plasmon resonance frequency. As an example, copper nanorods (CuNRs) are successfully grown in a limited space of preformed rod‐shaped polymer nanocapsules, thereby avoiding the complex nucleation kinetics involved in the conventional synthesis. The method is unique in that it enables the flexible control and fine‐tuning of the aspect ratio and the plasmonic resonance. We also show the high efficiency and stability of the as‐synthesized CuNRs in photothermal conversion and demonstrate their incorporation into nanocomposite polymer films that can be used as active components for constructing light‐responsive actuators and microrobots.  相似文献   

13.
Precise surface functionalization and reconfigurable capability of nanomaterials are essential to construct complex nanostructures with specific functions.Here we show tire assembly of a reconfigurable plasmonic nanostructure,which executes both conformational and plasmonic changes in response to DNA strands.In this work,different sized gold nanoparticles(AuNPs)were arranged site-specifically on the surface of a DNA origami clamp nanostructure.The opening and closing of the DNA origami clamp could be precisely controlled by a series of strand emplacement reactions.Therefore,the patterns of these AuNPs could be switched between two different configura-tions.The observed plasmon band shift indicates the change of the plasmonic interactions among the assembled AuNPs.Our study achieves the construction of reconfigurable nanomaterials with tunable plasmonic interactions,and will enrich the toolbox of DNA-based functional nanomachinery.  相似文献   

14.
The seed-mediated growth of gold nanostructures is shown to be strongly dependent on the gold seed nanocrystal structure. The gold seed solutions can be prepared such that the seeds are either single crystalline or multiply twinned. With added silver(I) in the cetyltrimethylammonium bromide (CTAB) aqueous growth solutions, the two types of seeds yield either nanorods or elongated bipyramidal nanoparticles, in good yields. The gold nanorods are single crystalline, with a structure similar to those synthesized electrochemically (Yu, Y. Y. et al. J. Phys. Chem. B 1997, 101, 6661). In contrast, the gold bipyramids are pentatwinned. These bipyramids are strikingly monodisperse in shape. This leads to the sharpest ensemble longitudinal plasmon resonance reported so far for metal colloid solutions, with an inhomogeneous width as narrow as 0.13 eV for a resonance at approximately 1.5 eV. Ag(I) plays an essential role in the growth mechanism. Ag(I) slows down the growth of the gold nanostructures. Ag(I) also leads to high-energy side facets that are {110} for the single crystalline gold nanorods and unusually highly stepped {11n} (n approximately 7) for the bipyramid. To rationalize these observations, it is proposed that it is the underpotential deposition of Ag(I) that leads to the dominance of the facets with the more open surface structures. This forms the basis for the one-dimensional growth mechanism of single crystal nanorods, while it affects the shape of the nanostructures growing along a single twinning axis.  相似文献   

15.
The enormous progress of nanotechnology during the last decade has made it possible to fabricate a great variety of nanostructures. On the nanoscale, metals exhibit special electrical and optical properties, which can be utilized for novel applications. In particular, plasmonic sensors including both the established technique of surface plasmon resonance and more recent nanoplasmonic sensors, have recently attracted much attention. However, some of the simplest and most successful sensors, such as the glucose biosensor, are based on electrical readout. In this review we describe the implementation of electrochemistry with plasmonic nanostructures for combined electrical and optical signal transduction. We highlight results from different types of metallic nanostructures such as nanoparticles, nanowires, nanoholes or simply films of nanoscale thickness. We briefly give an overview of their optical properties and discuss implementation of electrochemical methods. In particular, we review studies on how electrochemical potentials influence the plasmon resonances in different nanostructures, as this type of fundamental understanding is necessary for successful combination of the methods. Although several combined platforms exist, many are not yet in use as sensors partly because of the complicated effects from electrochemical potentials on plasmon resonances. Yet, there are clearly promising aspects of these sensor combinations and we conclude this review by discussing the advantages of synchronized electrical and optical readout, illustrating the versatility of these technologies.  相似文献   

16.
The use of an amorphous silicon-carbon alloy overcoating on silver nanostructures in a localized surface plasmon resonance (LSPR) sensing platform allows for decreasing the detection limit by an order of magnitude as compared to sensors based on gold nanostructures deposited on glass. In addition, silver based multilayer structures show a distinct plasmonic behaviour as compared to gold based nanostructures, which provides the sensor with an increased short-range sensitivity and a decreased long-range sensitivity.  相似文献   

17.
We report the plasmonic enhancement of the photocatalytic properties of Pt/n-Si/Ag photodiode photocatalysts using Au/Ag core/shell nanorods. We show that Au/Ag core/shell nanorods can be synthesized with tunable plasmon resonance frequencies and then conjugated onto Pt/n-Si/Ag photodiodes using well-defined chemistry. Photocatalytic studies showed that the conjugation with Au/Ag core/shell nanorods can significantly enhance the photocatalytic activity by more than a factor of 3. Spectral dependence studies further revealed that the photocatalytic enhancement is strongly correlated with the plasmonic absorption spectra of the Au/Ag core/shell nanorods, unambiguously demonstrating the plasmonic enhancement effect.  相似文献   

18.
By considering the molecule and metal to form a conjoined system, we derive an expression for the observed Raman spectrum in surface-enhanced Raman scattering. The metal levels are considered to consist of a continuum with levels filled up to the Fermi level, and empty above, while the molecule has discrete levels filled up to the highest occupied orbital, and empty above that. It is presumed that the Fermi level of the metal lies between the highest filled and the lowest unfilled level of the molecule. The molecule levels are then coupled to the metal continuum both in the filled and unfilled levels, and using the solutions to this problem provided by Fano, we derive an expression for the transition amplitude between the ground stationary state and some excited stationary state of the molecule-metal system. It is shown that three resonances contribute to the overall enhancement; namely, the surface plasmon resonance, the molecular resonances, as well as charge-transfer resonances between the molecule and metal. Furthermore, these resonances are linked by terms in the numerator, which result in SERS selection rules. These linked resonances cannot be separated, accounting for many of the observed SERS phenomena. The molecule-metal coupling is interpreted in terms of a deformation potential which is compared to the Herzberg-Teller vibronic coupling constant. We show that one term in the sum involves coupling between the surface plasmon transition dipole and the molecular transition dipole. They are coupled through the deformation potential connecting to charge-transfer states. Another term is shown to involve coupling between the charge-transfer transition and the molecular transition dipoles. These are coupled by the deformation potential connecting to plasmon resonance states. By applying the selection rules to the cases of dimer and trimer nanoparticles we show that the SERS spectrum can vary considerably with excitation wavelength, depending on which plasmon and/or charge-transfer resonance is excited.  相似文献   

19.
Random parallel nanostructures (ridges and channels) were created by scratching gold thin films deposited on glass slides. Atomic force microscope (AFM) images showed that the width of the substructures within the scratches were of the order of a few hundred nanometers. These nanometric gold features can then support localized surface plasmon resonances in the direction perpendicular to the propagation of the scratches. This surface plasmon excitation led to a remarkable dependence of the intensity of the surface-enhanced resonance Raman scattering (SERRS) on the polarization direction of the incident light relative to the orientation of the scratch. The maximum SERRS intensities for oxazine 720 (a common laser dye) adsorbed on these nanostructures were obtained when the polarization of the light field was perpendicular to the direction of the substructures. The SERRS intensities followed a squared dependence on the polarization direction of the incident field.  相似文献   

20.
Nanoscale uniform films containing gold nanoparticle and polyelectrolyte multilayer structures were fabricated by the using spin-assembly or spin-assisted layer-by-layer (SA-LbL) deposition technique. These SA-LbL films with a general formula [Au/(PAH-PSS)nPAH]m possessed a well-organized microstructure with uniform surface morphology and high surface quality at a large scale (tens of micrometers across). Plasmon resonance peaks from isolated nanoparticles and interparticle interactions were revealed in the UV-visible extinction spectra of the SA-LbL films. All films showed the strong extinction peak in the region of 510-550 nm, which is due to the plasmon resonance of the individual gold nanoparticles redshifted because of a local dielectric environment. For films with sufficient density of gold nanoparticles within the layers, the second strong peak was consistently observed between 620 and 660 nm, which is the collective plasmon resonance from intralayer interparticle coupling. Finally, we suggested that, for certain film designs, interlayer interparticle resonance might be revealed as an independent contribution at 800 nm in UV-visible spectra. The observation of independent and concurrent individual, intralayer, and interlayer plasmon resonances can be critical for sensing applications, which involve monitoring of optomechanical properties of ultrathin optically active compliant membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号