首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
累托石/聚丙烯插层纳米复合材料的制备与性能   总被引:19,自引:0,他引:19  
采用熔融共混法制备了有机改性累托石 (OREC)粘土 均聚聚丙烯 (PP)纳米复合材料 ,以X 射线衍射分析 (XRD)及透射电子显微镜分析 (TEM)观察了复合材料的相貌结构 ,研究了复合材料的力学性能及热性能 .结果表明 ,OREC在添加份数较少时可与均聚聚丙烯熔融插层形成插层型聚丙烯纳米复合材料 ,该复合材料与纯PP相比 ,具有较高的拉伸强度、断裂伸长率及冲击强度 .在有机粘土添加 2 %时 ,复合材料的拉伸强度、断裂伸长率、冲击强度最高 ,与纯PP相比 ,2 %添加量的聚丙烯纳米复合材料拉伸强度提高 6 5 7% ,断裂伸长率提高 2 89 3% ,冲击强度提高 14 1% ,10 %失重率时对应的热分解温度提高 50K .  相似文献   

2.
通过甲基丙烯酸羟丙酯(HPMA)单体与N-(4-羧基苯基)马来酰亚胺(CPMI)单体在有机蒙脱土(OMMT)中经原位插层自由基聚合反应制备了聚合物-无机纳米复合材料.OMMT由钠基蒙脱土通过十六烷基溴化铵插层处理制备.通过XRD和TEM对复合材料结构进行了表征,证实HPMA单体和HPMA/CPMI共单体在OMMT中原位插层共聚得到的复合材料均为剥离型纳米复合材料.OMMT含量为3 wt%的PolyHPMA/OMMT纳米复合材料起始分解温度为250℃,比相应的纯聚合物的热分解温度提高30℃.随着OMMT含量的增加,热分解温度进一步提高.但在测试温度范围内,PolyHPMA/OMMT纳米复合材料均没有出现明显的玻璃化转变温度.  相似文献   

3.
聚酰胺6/蒙脱石纳米复合材料的紫外光老化   总被引:2,自引:0,他引:2  
聚合物 /层状硅酸盐纳米复合材料的研究十分活跃 [1~ 4 ] .聚酰胺 6/蒙脱石 ( PA6/MMT)纳米复合材料与纯聚酰胺 6( PA6)相比 ,模量和强度明显提高 ,耐热性能提高尤为显著 .光氧化行为材料科学领域的重要研究课题 .Admas等 [5]报道在紫外光照射下 ,聚丙烯 /粘土纳米复合材料的氧化速度要比纯聚丙烯的快 .对于 PA6/MMT纳米复合材料的光老化研究尚未见报道 .本文以傅里叶变换红外光谱定量研究手段 ,对比分析了 PA6/MMT纳米复合材料与 PA6的紫外光氧化性能 .1 实验部分  采用熔体插层技术 ,将 PA6( Honeywell B1 0 0 MP)和有机蒙…  相似文献   

4.
采用乳液聚合法制备阻燃性聚苯乙烯MgAl层状双氢氧化物(LDHs)纳米复合材料.通过对不同合成条件下复合材料的XRD谱,讨论了纳米复合材料的形成过程;经SEM图证实了LDHs是以剥离的纳米级层片分散在基体中的;TG和DSC谱图揭示了LDHs纳米层板可有效提高PS的热稳定性,并可使PS的玻璃化转化温度明显提高;当层状双氢氧化物在插层复合材料中含量为14.92%时,纳米复合材料的氧指数可达23.5%,其用量比在PS中直接添加纳米LDHs时要少约一倍.文中还分析了纳米复合材料的形成过程.  相似文献   

5.
将插层聚合的概念引入烯烃聚合,制备了聚丙烯/蒙脱土(PP/MMT)纳米复合材料。X射线衍射和TEM分析结果表明,蒙脱土在聚丙烯基体中达到了纳米级的分散,动态力学性能研究结果表明,在高于Tg的温度区域内PP/MMT纳米复合材料的储能模量(E′)成倍增加,加入8%的蒙脱土(MMT),PP/MMT的E′提高近3倍。PP/MMT的玻璃化转变温度Tg有一定程度的提高,随蒙脱土含量的增加,PP/MMT的热分解温度和热变形温度(HDT)都有大幅度提高。  相似文献   

6.
采用银镜法和水热法制备了两种纳米Ag/CNTs(碳纳米管)复合材料, 利用傅里叶变换红外(FTIR)光谱、粉末X射线衍射(XRD)、透射电子显微镜(TEM)、扫描电子显微镜及能量散射光谱仪(SEM-EDS)对复合物的物相、组成、形貌和结构进行分析表征, 并运用差示扫描量热法(DSC)研究了纳米Ag/CNTs 复合材料对环三亚甲基三硝胺(RDX)热分解特性的影响. 结果表明: 纳米Ag 以10-80 nm的不规则球形“粘附”于纳米CNTs 表面,分散较均匀, 水热法制得的复合物表面纳米Ag较大、且负载的Ag粒子较多; 纳米Ag/CNTs 复合材料的加入改变了RDX的热分解过程, 使原有占主导的液相分解变为二次的气相反应加剧, RDX主分解峰形发生了明显的改变; 纳米Ag/CNTs 复合材料对RDX热分解的催化主要表现为分解温度的降低.  相似文献   

7.
聚丙烯/多壁碳纳米管复合材料的热性能和流变性能   总被引:5,自引:0,他引:5  
用熔融共混法制备了聚丙烯多壁碳纳米管(PP MWNTs)复合材料,TGA研究表明在氮气气氛下碳纳米管显著增加了聚丙烯基体的热稳定性.3wt%MWNTs可使PP热分解起始温度提高44℃.非等温结晶研究表明MWNTs对PP基体的结晶行为没有明显的影响.流变测试结果表明PP MWNTs复合材料的储能模量G′和损耗模量G″随着MWNTs含量增加逐渐增大.1wt%MWNTs的PP聚合物的零剪切粘度最低,5wt%MWNTs的PP聚合物的零剪切粘度最高,PP和3wt%MWNTs的PP纳米聚合物的零剪切粘度居于二者之间,随着频率的增加,剪切稀化作用越来越明显,呈现出假塑性流体行为.含5wt%MWNTs的PP复合材料的体积和表面电阻率与纯PP相比分别下降了9个和4个数量级,表明少量的MWNTs可以显著改变PP的电学性能.  相似文献   

8.
通过原位聚合方法制备了以非水溶性聚合物(聚甲基丙烯酸甲酯,PMMA)为基体,与MgFe双氢氧化物(LDH)具有良好相容性的层离型纳米复合材料.采用小角、广角X射线衍射(XRD)及透射电镜(TEM)对纳米复合材料的微观结构进行了分析,通过热重分析(TG)和玻璃化转变研究了纳米复合材料在空气和氮气氛围下的热降解过程.实验结果表明,MgFe-LDH的引入显著提高了聚合物基体的热降解温度和玻璃化转变温度,纳米复合材料的热稳定性显著提高.其中含量1.6 wt%的层离型纳米复合材料在失重50%时的热降解温度比纯样提高约69℃.并且整个纳米复合体系的相容性良好,含量8.0 wt%的样品,其可见光透过率仍可达90%以上.  相似文献   

9.
以表面含有氨基的可反应性纳米SiO2(RNS-A)和表面含有烷基碳链的可分散性纳米SiO2(DNS-3)作为填料,利用原位聚合法制备了尼龙6/SiO2纳米复合材料(相应的复合材料分别简记为RPA和DP3);采用透射电子显微镜观察了复合材料中纳米SiO2的表面形貌,并利用热失重分析仪测定了复合材料的热稳定性,进而考察了纳米SiO2表面功能基团对尼龙6力学性能和热稳定性的影响.结果显示,纳米SiO2能够很好地分散在尼龙6基体中,并使尼龙6的热分解温度提高10℃左右.与此同时,RPA的最大拉伸强度和冲击强度较纯尼龙6的分别提高34.5%和12.5%,DP3的最大拉伸强度和冲击强度分别提高18.2%和45.7%.这表明两种纳米SiO2均可以有效地提高尼龙6的力学性能和热稳定性;可以推测,纳米SiO2的增强效应与其在尼龙6基体材料中的分散和界面作用有关.  相似文献   

10.
戈明亮  贾德民 《高分子学报》2010,(10):1199-1203
选用有机季鏻盐作为插层剂对黏土进行有机化插层改性,制备出有机黏土,通过熔融插层法制备聚丙烯/有机黏土纳米复合材料.XRD表明有机季鏻盐改性的黏土与聚丙烯形成结构为剥离型与插层型并存的纳米复合材料.利用DSC研究了纳米复合材料的熔融过程,结果显示有机黏土对聚丙烯的结晶度影响不明显.XRD和DSC的研究均表明,有机黏土可以诱发聚丙烯产生不常见的γ晶型.当黏土含量为5 wt%时,γ晶型占整个结晶部分的12%左右.  相似文献   

11.
The behaviour of polypropylene nanocomposites containing different amounts of commercial nanoclay upon exposure to distilled water and sea water at different temperatures was investigated and compared with that of neat polypropylene. In the initial stages, the weight gain (moisture absorption) follows Fick's second law, but at longer times deviations are observed owing to physical degradation and in some cases a loss of mass. Distilled water diffuses more rapidly than sea water. As the nanoclay content increases, both the rate of moisture absorption and the maximum moisture content increase, owing to the hydrophilic nature of the nanoclay and the added compatibilizing agent. Although the moisture absorption decreases the flexural properties of both the nanocomposites and neat PP, because the unexposed (as-moulded) nanocomposites are significantly superior to the neat PP they remain so even after prolonged exposure.  相似文献   

12.
Polypropylene/organoclay (PP/OMMT) nanocomposites were prepared in a twin-screw corotating extruder using two methods. The first method was the dilution of commercial (PP/50% Nanofil SE3000) masterbatch in PP (or PP with commercial flame retardant). The second method consists of two stages was the extrusion of maleic anhydride grafted polypropylene (PP-g-MAH) with commercially available organobentonite masterbatch in first stage and dilution of the masterbatch in PP (or PP with commercial flame retardant) in second stage. XRD results showed no intercalation in composites obtained from commercial masterbatch without compatibilizer and semi - delamination for compatibilized systems. Tensile tests revealed that nanocomposites with 5% of organoclay have a slightly higher tensile modulus and tensile strength than pristine PP, however addition of the commercial flame retardant (FR) reduces mechanical parameters to roughly the level of those for neat PP. PP/OMMT composites have approx. 25% higher oxygen index than pristine PP, and this changes slightly after the addition of FR. The cone calorimeter tests showed a decrease of a heat release rate (HRR) and a mass loss rate (MLR) after the addition of FR.  相似文献   

13.
In the article, the thermal oxidative degradation kinetics of pure polypropylene/aluminum trihydroxide (PP/ATH) and PP/ATH/organo Fe-montmorillonite (Fe-OMT) nanocomposites were investigated using Kissinger, Friedman and Flynn–Wall–Ozawa methods. The results showed that thermal oxidative degradation of PP/ATH/Fe-OMT nanocomposites to PP/ATH were complex reaction: the whole process of thermal oxidative degradation were composed with the decomposition of ATH, the cracking and charring of the backbone chains of PP, and the oxidative degradation of char, which the curses of energy mutative with the process of thermal oxidative degradation. The control steps were different in each degradation stage. The activation energy was high in the original degradation stage. It was due to the molecular structure and may closely relate with onset temperature. In the intermediate process, the activation energy was low. In the last stage of the degradation, the activation energy was graveled because the carbon may be oxidized. In the whole process of thermal oxidative degradation, the activation energy of PP/ATH/Fe-OMT nanocomposite was higher than that of PP/ATH.  相似文献   

14.
The effects of reprocessing cycles on the structure and properties of isotactic polypropylene (PP)/Cloisite 15A (OMMT) (5 wt. %) nanocomposites was studied in presence of maleic anhydride-grafted-polypropylene (PP-g-MA) (20 wt. %) used as the compatibiliser to improve the clay dispersion in the polymer matrix. The various nanocomposite samples were prepared by direct melt intercalation in an internal mixer, and further they were subjected to 4 reprocessing cycles. For comparative purposes, the neat PP was also processed under the same conditions. The nanocomposite structure and the clay dispersion have been characterized by wide angle X-ray scattering (WAXS), transmission electron microscopy (TEM) and rheological measurements. Other characterization techniques such as Fourier transform infrared spectroscopy (FT-IR), tensile measurements, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) have also been used to evaluate the property changes induced by reprocessing. The study showed through XRD patterns that the repetitive reprocessing cycles modified the initial morphology of PP/OMMT nanocomposites by improving the formation of intercalated structure, especially after the fourth cycle. Further, the addition of PP-g-MA promoted the development of intercalated/exfoliated silicate layers in the PP matrix after the second cycle. These results are in agreement with TEM observations indicating an improved silicate dispersion in the polymer matrix with reprocessing cycles displaying a morphology with both intercalated/exfoliated structures. The initial storage modulus (G′) of the nanocomposites, which was highly improved in presence of PP-g-MA seems to be less affected by reprocessing cycles at very low frequencies exhibiting a quasi-plateau compared to pristine PP/OMMT and PP. In contrast, the complex viscosity was found to decrease for the whole samples indicating that the main effect of reprocessing was a decrease in the molecular weight. Moreover, the thermal and mechanical properties of the nanocomposites were significantly reduced after the first cycle; nevertheless they remained almost unchanged during recycling. No change in the chemical structure was observed in the FT-IR spectra for both the nanocomposites and neat PP samples after 4 cycles.  相似文献   

15.
The influence of two concentrations of clay nanoparticles on the nonisothermal crystallization behavior of the intercalated polypropylene-clay nanocomposites is investigated here. It is observed that the crystallization peak temperature (Tp) of PP-clay nanocomposites is marginally higher than neat PP at various cooling rates. Furthermore, the half-time for crystallization (t0.5) decreased with increase in clay content, implying the nucleating role of clay nanoparticles. The nonisothermal crystallization data is analyzed using Avrami, Ozawa and Mo and coworkers methods. The validity of kinetic models on the nonisothermal crystallization process of PP-clay nanocomposites is discussed. The approach developed by Mo and coworkers successfully describes the nonisothermal crystallization behavior of PP and PP-clay nanocomposites. The activation energy for nonisothermal crystallization of pure PP and PP-clay nanocomposites based on Kissinger method is evaluated.  相似文献   

16.
Nanocomposites of poly(l-lactic acid) (PLLA) containing 2.5 wt% of fumed silica nanoparticles (SiO2) and organically modified montmorillonite (OMMT) were prepared by solved evaporation method. From SEM micrographs it was observed that both nanoparticles were well dispersed into PLLA matrix. All nanocomposites exhibited higher mechanical properties compared to neat PLLA, except elongation at break, indicating that nanoparticles can act as efficient reinforcing agents. Nanoparticles affect, also, the thermal properties of PLLA and especially the crystallization rate, which in all nanocomposites is faster than that of neat PLLA. From the thermogravimetric curves it can be seen that neat PLLA nanocomposites present a relatively better thermostability than PLLA, and this was also verified from the calculation of activation energy (E). From the variation of E with increasing degree of conversion it was found that PLLA/nanocomposites decomposition takes place with a complex reaction mechanism, with the participation of two different mechanisms. The combination of models, nth order and nth order with autocatalysis (Fn–Cn), for PLLA and PLLA/OMMT as well as the combination of Fn–Fn for PLLA/SiO2 give the better results. For the PLLA/OMMT the values of the E for both mechanisms are higher than neat PLLA. For the PLLA/SiO2 nanocomposite the value of the E is higher than the corresponding value for PLLA, for the first area of mass loss, while the E of the second mechanism has a lower value.  相似文献   

17.
唐涛 《高分子科学》2009,(6):879-888
A model experiment was done to clear the formation mechanism of protective layers during combustion of polypropylene(PP)/organically modified montmorillonite(OMMT) nanocomposites.The investigation was focused on the effects of annealing temperature on the structural changes and protective layer formation.The decomposition of OMMT and degradation of PP/OMMT nanocomposites were characterized by means of thermogravimetric analysis(TGA).The structural evolution and composition change in the surface region of...  相似文献   

18.
The effect of organo‐modified clay (Cloisite 93A) on the crystal structure and isothermal crystallization behavior of isotactic polypropylene (iPP) in iPP/clay nanocomposites prepared by latex technology was investigated by wide angle X‐ray diffraction, differential scanning calorimetry and polarized optical microscopy. The X‐ray diffraction results indicated that the higher clay loading promotes the formation of the β‐phase crystallites, as evidenced by the appearance of a new peak corresponding to the (300) reflection of β‐iPP. Analysis of the isothermal crystallization showed that the PP nanocomposite (1% C93A) exhibited higher crystallization rates than the neat PP. The unfilled iPP matrix and nanocomposites clearly shows double melting behavior; the shape of the melting transition progressively changes toward single melting with increasing crystallization temperature. The fold surface free energy (σe) of polymer chains in the nanocomposites was lower than that in the PP latex (PPL). It should be reasonable to treat C93A as a good nucleating agent for the crystallization of PPL, which plays a determinant effect on the reduction in σe during the isothermal crystallization of the nanocomposites. The activation energy, ΔEa, decreased with the incorporation of clay nanoparticles into the matrix, which in turn indicates that the nucleation process is facilitated by the presence of clay. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1927–1938, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号