首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于纳米金胶标记DNA探针的电化学DNA传感器研究   总被引:6,自引:0,他引:6  
以纳米金胶为标记物,将其标记于人工合成的5-端巯基修饰的寡聚核苷酸片段上,制成了具有电化学活性的金胶标记DNA电化学探针;在一定条件下,使其与固定在玻碳电极表面的靶序列进行杂交反应,利用ssDNA与其互补链杂交的高度序列选择性和极强的分子识别能力,以及纳米金胶的电化学活性,实现对特定序列DNA片段的电化学检测以及对DNA碱基突变的识别.  相似文献   

2.
溴化乙锭标记DNA电化学探针的研究   总被引:12,自引:0,他引:12  
以乙基-(3-二甲基丙基)碳化二亚胺盐酸盐(EDC)为偶联活化剂,将电化学活性物质溴化乙锭(Ethidiumbromide,EB)成功地标记在人工合成的含有21个碱基的寡聚DNA片段上,制备成EB标记DNA探针;用电化学方法将待测样品DNA片段固定在石墨电极表面,在一定的温度、pH值和离子强度条件下与EB标记DNA探针进行杂交反应,从而对靶序列DNA片段进行识别和测定.此外,还讨论了该探针的电化学性质、荧光光谱、待测DNA片段在石墨电极表面的电化学固定、DNA链碱基长度对EB标记DNA电化学探针的影响以及探针的选择性、重现性和寿命,结果令人满意.  相似文献   

3.
用模板法在氧化铟锡(ITO)电极上制备具有三维有序多孔结构的金掺杂纳米二氧化钛修饰电极(3DOM GTD/ITO),扫描电镜(SEM)结果表明,制备的修饰电极三维结构规整有序、孔径均一。将标记有二茂铁(Fc)的DNA探针修饰到3DOM GTD/ITO电极上构建了一种新的标记型DNA生物传感器,通过Fc在DNA探针杂交前后的电化学信号变化可识别目标靶序列。采用循环伏安(CV)、示差脉冲(DPV)和交流阻抗(EIS)等方法对DNA探针在电极表面的固定和杂交进行表征。实验结果表明,该DNA生物传感器可以成功地识别乳腺癌基因靶序列,Fc的氧化还原电流与靶序列浓度在8.0×10-7~1.0×10-5 mol/L范围内呈线性关系,线性相关系数为0.9908,检测限为5.2×10-7 mol/L。  相似文献   

4.
基于硫化镉纳米团簇标记DNA电化学传感的研究   总被引:3,自引:2,他引:3  
祝宁宁  张爱平  何品刚  方禹之 《化学学报》2003,61(10):1682-1685
合成了表面具有自由羧基的硫化镉纳米团簇,以乙基-(3-二甲基丙基)碳二 亚胺盐酸盐为偶联活化剂,将其标记于人工合成的5'端氨基修饰的寡聚核苷酸片段 上,制备成CdS纳米团簇标记DNA探针,该寡聚核苷酸片段与大肠杆菌肠毒素基因相 关。在一定的条件下,使基与固定晨玻碳电极表面的待测DNA序列进行杂交反应, 利用阳极溶出示差脉冲伏安法(ASDPV)间接测定Cd的量,实现对互补、非互补 DNA片段的识别和电化学检测,从而对大肠杆菌肠毒素基因片段识别和检测。  相似文献   

5.
本文基于磁性粒子(MB)良好的分离、富集能力,研究了硫化铜纳米粒子标记的流动注射-化学发光(FI-CL)DNA检测体系.通过硫化铜标记的探针1与目标DNA及连有磁球的探针2形成三明治结构,实现对目标DNA的捕获、分离与标记;通过其溶解释放出CuS标记颗粒的铜离子,引起化学发光信号增强,实现了目标DNA序列的定性定量检测.该方法对完全互补单链DNA(ssDNA)检测的线性范围为1.0×10-11~1.6×10-9 mol/L,检出限为3.0×10-12 mol/L,对1.0×10-9 mol/L目标DNA测定的相对标准偏差为3.2%(n=11),对目标碱基序列具有良好的识别能力.  相似文献   

6.
DNA分子中的碱基对可以长程传递电荷, DNA分子中的碱基π堆积结构为电荷的长程传递提供了良好的通道. 电荷在DNA分子中的传递受碱基序列的影响, 利用这种性质可以构建DNA碱基错配检测的电化学传感器. 寡聚酰胺能和DNA以小沟绑定方式高亲和力地结合, 并且具有序列识别功能, 本文以带有硝基官能团的寡聚酰胺分子为电化学探针, 设计了电化学DNA生物传感器. 结果显示, 寡聚酰胺与DNA修饰电极作用后, 电化学响应显著增强, 并且可以作为检测DNA碱基错配的电化学探针分子.  相似文献   

7.
陆宝仪  李红 《分析测试学报》2006,25(1):94-97,101
DNA电化学传感器是近几年发展起来的一类新型的生物传感器[1]。它不仅可以用来识别和检测特定碱基序列的DNA[2],还可以用来研究DNA的损伤及与药物的作用机理[3]。与同位素标记等方法相比,该类传感器具有识别能力强、简单、快速和灵敏度高等特点[4]。随着人类基因组计划和流行性  相似文献   

8.
基于发夹型核酸探针的高特异性识别能力以及电活性物质与DNA磷酸骨架间的静电作用,以发夹型核酸作为分子识别探针,电活性物质六氨合钌(RuHex)作为杂交指示剂,构建了一种非标记型检测p53抑癌基因的电化学DNA生物传感器.实验结果表明,在10 μmol/L RuHex溶液中,该传感器对目标DNA具有灵敏的电化学响应,电化...  相似文献   

9.
本文以人参ITS及518 s基因上的SNP位点为检测对象,利用分子识别作用构建了一种电化学传感器,成功地对人参、西洋参进行了品种鉴别。本文设计合成了一种双标记DNA探针(DLP),该探针的一端标记了4-4-二甲氨基苯基偶氮苯甲酸(dabcyl)作为客体分子,另一端标记了金纳米颗粒作为电化学杂交指示剂。同时使用α-CD/MCNTs/GCE电极作为工作电极。由于DLP的茎环结构,只有在DLP与目标DNA杂交后,DLP上的dabcyl分子进入修饰电极表面的α-CD空腔中,进而DLP被α-CD修饰电极捕获。并且,通过金纳米颗粒的AuCl4-的电化学还原电流信号。可灵敏检测4.6×10-10mol.L-1的目标DNA。  相似文献   

10.
CdTe量子点标记的DNA电化学传感器的研究   总被引:2,自引:1,他引:1  
利用碳纳米管和CdTe量子点(QDs)组装的电化学传感器,建立了一种识别DNA的新方法.将氨基修饰的单链DNA探针共价键合固定在带有羧基的碳纳米管修饰的金电极上,然后与CdTe QDs标记的目标DNA进行杂交.利用差分脉冲法(DPV)和循环伏安法对目标DNA的固定和杂交进行表征,通过电活性指示剂柔红霉素(DNR)的DPV峰电流变化,对互补DNA、非互补DNA和单碱基错配DNA序列进行识别.与未标记CdTe QDs的目标DNA相比,标记CdTe QDs的目标DNA序列的电流响应灵敏度明显提高.DNA电化学传感器检测的优化条件:DNR的浓度为1.67×10-5 mol/L,DNA杂交时间为80 min,杂交温度为55 ℃.在1.0×10-13 ~1.0×10-8 mol/L范围,目标DNA浓度的对数值与其响应的DPV信号(还原峰电流)呈线性关系,检出限为3.52×10-14 mol/L(S/N=3,n=9),线性方程为ΔI=50.22+3.567 lgcDNA,相关系数为0.996 6.对1.0×10-10 mol/L的目标DNA样品进行重复测定,相对标准偏差为4.8%(n=5),重复性良好.  相似文献   

11.
电化学石英晶体微天平实时表征和定量检测短序列DNA   总被引:3,自引:0,他引:3  
张盛龙  彭图治 《化学学报》2001,59(11):1989-1993
利用电化学石英晶体微天平(EQCM)这一灵敏的质量和电化学传感器测定特定序列DNA。应用自组装膜技术在压电石英晶振表面自组装一带羧基的α-硫辛酸单层膜,通过盐酸1-乙基-3-(3-二甲基氨基丙基)碳二亚胺(EDC)及N-羟基琥珀酰亚胺(NHS)共价固化寡聚核苷酸为探针,用于测定与其碱基序列互补的DNA。实验中EQCM实时监测了α-硫辛酸的自组装过程、探针固化过程及其与cDNA杂交过程。定量得出了探针固化量及cDNA杂交量。在酸性、中性和碱性条件下,分别对固化和杂交过程进行表征,实验发现探针固化及DNA杂交都受pH影响,本文对此现象进行了解释。同时,利用染料Hoechst33258的电化学活性,使其与双链DNA嵌合,通过测量Hoechst33258的电化学信息进一步验证了DNA杂交关键步骤。  相似文献   

12.
该研究报道了一种靶标介导的DNA自组装及催化信号放大免标记电化学传感器定量检测microRNA-21的分析方法。根据靶标序列,设计一条末端标记巯基且具有茎环结构的捕获探针以及两条与捕获探针和靶标部分互补的DNA单链,通过金-硫键作用将捕获探针固定在金电极表面。当靶标(microRNA-21)存在时,自组装形成一种H结构的DNA复合结构;利用核酸链中磷酸骨架静电吸附电解液中的钌氨离子([Ru(NH3)6]3+,RuHex)以及DNA电子传递作用产生电化学信号;当无靶标时,不能形成DNA复合结构,电化学信号较弱。进一步利用铁氰根离子([Fe(CN)6]3-)能够氧化电化学还原产物([Ru(NH3)6]2+),产生电化学-化学偶联,从而实现催化电流信号放大。采用电化学阻抗谱确证DNA复合结构的形成,采用计时电量法考察捕获探针密度对电化学信号的影响,并优化探针浓度、比例以及自组装时间,采用差示脉冲伏安法进行定量分析。结果显示,在0.1 fmol/L ~ 0.1 nmol/L范围内,峰电流与microRNA-21浓度具有良好的线性关系,检出限为12.8 amol/L。方法能有效区分其他microRNA以及单碱基错配核酸序列,成功用于多种细胞中microRNA-21的定量检测。该电化学传感器具有灵敏度高、选择性好、线性范围宽等优点,无需繁琐的电化学探针标记以及费时费力的PCR扩增、滚环扩增、链置换反应等分析策略,简化了操作流程,提高了方法的实用性。  相似文献   

13.
传统的电化学DNA生物传感技术通常包括以下3个步骤,即电极表面探针DNA的固定、固液两相间DNA的杂交反应和电化学信号的读出,由于探针和目标序列的杂交过程发生在两相间,所以降低了杂交效率.在此,我们基于主客体识别和分子信标技术,设计了一种新型的电化学DNA传感器,可实现DNA在均一水相中的杂交反应,然后杂交体被捕获到电极表面进行电化学检测,具有高的灵敏度和选择性.  相似文献   

14.
基于β-环糊精(β-CD)和间甲基苯甲酸(mTA)的主客体识别,建立了均相DNA杂交电化学生物传感技术。将主体分子β-CD通过电化学聚合的方法固定在氮乙酰基苯胺修饰的玻碳电极表面,同时将mTA通过酸胺缩合反应标记在探针DNA序列上,与目标DNA在溶液均相中杂交之后,用修饰好的电极对探针DNA上的mTA进行主客体识别。以两种嵌入剂作为电化学指示剂——亚甲基蓝(MB)和道诺霉素(DNM),证实了方法的可行性。MB的电化学信号与完全互补DNA浓度在2.0×10"12~2.0×10"10mol/L之间呈良好线性关系,检出限为7.6×10"13mol/L;DNM的电化学响应与完全互补DNA浓度在1.0×10"12~1.0×10"9mol/L之间呈良好线性关系,检出限可达6.0×10"13mol/L,并表现出良好的重现性和稳定性。  相似文献   

15.
依据三螺旋DNA的形成,以氧化石墨烯为基础建立了一种识别特定序列双螺旋DNA的方法。单链探针DNA能够通过静电引力作用吸附在氧化石墨烯表面,标记在单链DNA末端的荧光探针分子TAMRA由于荧光能量共振转移作用使得其荧光发生淬灭。加入目标双螺旋DNA后,单链探针DNA与目标DNA分子形成三螺旋DNA,探针DNA从氧化石墨烯表面脱附,标记在探针DNA上的荧光分子的荧光恢复。在最佳实验条件下,荧光恢复的强度与探针DNA的浓度在20.0~300.0 nmol/L具有良好的线性关系,检出限为16.9 nmol/L。该方法在DNA药物筛选及基因疾病的诊断方面具有一定的应用前景。  相似文献   

16.
该文以特殊设计的DNA序列为捕获探针,以G-四链体-血红素复合物作为信号分子,利用链式反应实现目标DNA的灵敏检测。在目标DNA存在时,捕获探针与目标DNA相互识别,同时目标DNA能与辅助探针发生连续的链式反应,从而在电极表面引入大量G-四链体结构。血红素存在下,G-四链体可与血红素结合形成具有很强电化学信号的G-四链体-血红素复合物。用差分脉冲伏安法(DPV)扫描得到的电化学信号与体系中的目标DNA浓度存在对应关系,从而实现对目标DNA的检测。在各组分浓度最适的情况下,电流响应值与目标DNA浓度在0.01~10 pmol/L内具有良好的线性关系,检出限可达8 fmol/L。该传感器灵敏度高、特异性好,具有良好的应用前景。  相似文献   

17.
CRISPR-Cas12a是一种功能强大且可编程的分子诊断技术。本文基于CRISPR-Cas12a的附属切割活性与G-四链体/氯化血红素(Hemin)复合物,设计了一个免标记电化学生物传感器,实现对miRNA的强特异性检测。靶标miRNA-21与双链DNA探针上的Toehold区域结合并发生链置换反应,置换出双链DNA探针中较短的DNA。置换下来的DNA可以有效地激活CRISPR-Cas12a的附属切割活性。随后,具有附属切割活性的Cas12a切割电极表面上形成G-四链体/Hemin的DNA序列,导致电流信号减弱。在最优条件下,电流信号强度变化与10~100 pmol/L范围内的miRNA-21浓度呈良好的线性关系,检出限为4.2 pmol/L。该电化学生物传感器能够实现对单个碱基突变的miRNA-21或其它miRNA序列特异性识别,并可用于人血清样本(10%)中miRNA-21的检测。  相似文献   

18.
基于磁性微球的无标记化学发光端粒传感新技术   总被引:2,自引:0,他引:2  
近年来无标记型DNA传感技术的研究已成为病原基因测定和基因疾病诊断等领域新的研究热点之一. 基于磁性微球分离和富集的方法, 建立了一种新型的无标记化学发光检测技术, 并成功地应用于特定序列DNA——端粒的检测. 首先采用dT20修饰的磁性微球, 与连接有dA20的捕获探针DNA杂交, 然后再与端粒进行第二步杂交反应. 磁性分离洗涤后, 利用端粒中富含的G碱基与3,4,5-三甲氧基苯乙二醛反应产生特异性化学发光, 从而实现特定序列 DNA——端粒的无标记检测. 实验结果表明: 该法具有操作简便、分析快速、灵敏度高、专属性好等特点. 目标DNA浓度在5×10-9~1×10-7 mol/L浓度范围内具有良好的线性关系, 相关系数为0.9918.  相似文献   

19.
构建了以3种不同电活性物质(铁氰化钾平衡电对、亚甲基蓝和六氨合钌)为电化学信号探针,检测乳腺癌基因片段(乳腺癌DNA)的电化学传感器。利用吸附作用将探针ss DNA固定于金纳米-多壁碳纳米管-Nafion复合纳米材料修饰金电极表面,制备了DNA电化学传感器。采用循环伏安法、电化学阻抗法和微分脉冲伏安法,对DNA电化学传感器进行表征和定量分析。实验结果表明,在5 mmol/L K3[Fe(CN)6]-5mmol/L K4[Fe(CN)6]平衡电对电化学探针检测液中,乳腺癌DNA的线性范围为0.1~500.0 nmol/L,其检出限(S/N=3)为0.03 nmol/L。以20μmol/L亚甲基蓝为电化学探针检测液时,乳腺癌DNA的线性范围为1.0~500.0 nmol/L,检出限为0.3 nmol/L。利用50μmol/L六氨合钌电化学探针检测时,乳腺癌DNA的线性范围为1.0~500.0 nmol/L,检出限为0.3 nmol/L。3种电化学探针中,利用铁氰化钾平衡电对探针检测乳腺癌DNA的检出限最低,线性范围最宽。该传感器可用于其他DNA的检测分析。  相似文献   

20.
朱旭  李凯  刘林  王建秀  刘又年 《化学学报》2008,66(21):2379-2383
建立了电化学检测表面固定捕获的野生型p53蛋白质的方法. 首先在金电极表面形成巯基化的单链DNA探针/己硫醇(HT)混合自组装膜, 随后巯基化的单链DNA探针与溶液中序列匹配的靶点DNA杂交, 所形成的一致性双链DNA捕获溶液中的野生型p53蛋白质. p53分子表面的半胱氨酸残基采用巯基特异性试剂N-(2-乙基-二茂铁)马来酰亚胺(Fc-Mi)进行衍生. 通过检测二茂铁的电化学信号来指示p53与一致性双链DNA之间的特异性相互作用. p53蛋白质与双链DNA的键合程度取决于双链DNA的序列. 该方法可检测的p53最低浓度为1.33 nmol•L-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号