首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
杨永忠  刘鸿  高仁孝 《合成化学》2004,12(6):608-610
钌/碳催化剂应用于4-(4'-丙基环己基)苯酚(3PCO)的加氢反应,合成了4-(4'-丙基环己基)环己醇.以环己烷为溶剂,在98℃/2MPa,3PCO的转化率为100.0%,催化剂可以重复使用两次.  相似文献   

2.
袁冰  张新  侯万国 《化学研究》2010,21(6):45-48
以对苯二甲酸根阴离子为预支撑体,制备了磷钨酸插层Zn/Al类水滑石杂化物催化剂,将其用于邻苯二甲酸二(2-乙基)己酯(DOP)的合成反应.研究了原料配比、催化剂用量、反应温度、反应时间等对邻苯二甲酸酐转化率的影响,及催化剂的可重复利用性.结果表明,磷钨酸-Zn/Al类水滑石杂化催化剂对DOP合成的催化效果较好,在催化剂用量为苯酐质量的0.76%,异辛醇与邻苯二甲酸酐的摩尔比为2.5,反应温度为180℃,反应时间为4.5 h,带水剂环己烷约为苯酐质量65%的反应条件下,苯酐转化率可达92.8%;反应10 h转化率可达97.9%.催化剂重复使用时转化率略有下降,经过乙醇洗涤再生,活性即可基本恢复.  相似文献   

3.
以介孔分子筛SBA-15为载体, 先采用γ-氨丙基三乙氧基硅烷(APTES)进行氨基硅烷化修饰, 然后经甲基三乙氧基硅烷(MTES)疏水修饰后固载双水杨醛缩乙二胺合钴配合物(Cosalen). 采用傅里叶变换红外光谱、 紫外-可见漫反射光谱、 X射线光电子能谱、 元素分析、 等离子体发射光谱、 X射线衍射和氮气物理吸附等手段对制备的固载型催化剂Cosalen/SBA-15进行了物相结构和修饰程度的表征, 并考察了样品对甲苯、 苯甲醛和苯甲醇的吸附性能及在甲苯液相氧化反应中的催化性能. 结果表明, 固载型催化剂Cosalen/SBA-15的介孔结构和孔道有序性保持良好, Cosalen通过与氨基配位固载在修饰后的载体SBA-15上, 且高度分散, 氨基硅烷化和甲基修饰明显增强了其表面疏水性能, 对苯甲醛和苯甲醇的吸附量降低. 疏水性Cosalen/SBA-15协同N-羟基邻苯二甲酰亚胺(NHPI)催化甲苯液相分子氧氧化反应, 无溶剂体系在130 ℃下反应2 h, 甲苯转化率达到16.0%, 产物中苯甲醛和苯甲醇的总选择性为32.0%, 在一定程度上抑制了极性产物深度氧化为苯甲酸. 高温不利于苯甲醛和苯甲醇选择性的提高, 降低温度至110 ℃, 甲苯转化率达到12.9%时, 苯甲醛和苯甲醇的总选择性提高到43.9%.  相似文献   

4.
环己醇和环己酮俗称KA油,是用于制备尼龙材料的己二酸和己内酰胺的重要中间体.工业上制取环己醇和环己酮的方法主要为苯酚加氢法、环己烯水合法和环己烷氧化法,其中环己烷氧化法的应用最为普遍,包括硼酸氧化法、过氧化物氧化法和钻盐催化氧化法三种路线.为获得适宜的环己醇和环己酮选择性,工业上环己烷氧化单程转化率通常控制在5.0%以下,从而使得产物选择性在80%以上.因此,现有环己烷氧化法生产KA油的最大挑战是如何同时获得高环己烷转化率和高KA油选择性.迄今,己有多种催化剂被尝试用于环己烷氧化反应,包括金属卟啉、金属氧化物、分子筛、碳纳米管和金属-有机骨架材料等.由于均相催化剂无法从环己烷氧化反应体系中分离出来,导致催化剂不能重复利用,因此多相催化剂的研究更受青睐.另外,由于采用氧气为氧化剂时具有环境友好和更高的原子经济性,因此氧气选择性氧化环己烷反应己逐渐成为环己烷氧化法制KA油中最具挑战性的研究.目前,氧气为氧化剂时的环己烷转化率通常低于过氧化氢和叔丁基过氧化氢等为氧化剂时的转化率,其关键在于适用于固(催化剂)液(环己烷)气(氧化剂)反应体系的高性能催化剂.本课题组前期研究了系列金属掺杂分子筛(Ce/AlPO-5,Ce-MCM-41/48和Mg-Cu/SBA-15等)对氧气催化氧化环己烷的反应性能,发现无论是稀土还是过渡金属掺杂,通过影响环己烷氧化反应的自由基产生和反应历程,可显著提高环己烷转化率或者KA油的选择性.基于此,本文选择原料易得、成本较低和氧化能力强的氧化锰(MnO_x)作为具有强氧化能力的过渡金属氧化物的代表,深入研究了MnO_x的焙烧温度对其结构和选择性氧化环己烷反应性能的影响,同时研究了反应条件对催化剂性能的影响.结果表明,400℃焙烧制得的催化剂(MnO_x-400)比350,450和500℃焙烧制得的催化剂具有更高的活性.在最佳反应条件(140℃,O_2起始压力0.5 MPa,反应4 h)下,使用20 mg MnO_x-400可使环己烷转化率达8.0%,KA油得率为5.0%.过高的反应温度、过长的反应时间和过高的反应压力都会导致产物被过度氧化,KA油选择性降低.另外,该催化剂重复使用10次,其活性没有明显下降,显示出了很好的稳定性.表征测试结果表明,MnO_x催化剂在不同温度焙烧后形成了不同的结晶形态:焙烧温度小于500℃时,催化剂主要组成为Mn_3O_4和Mn_5O_8,500℃时主要为Mn_3O_4,Mn_5O_8和Mn_2O_3.而且随着焙烧温度升高,MnO_x催化剂的比表面积逐渐降低.相比于350℃焙烧制得的催化剂,MnO_x-400催化剂具有更好的结晶形态,这可能是造成其活性较好的原因.而相比于MnO_x-400,500℃焙烧制得的催化剂表面Mn~(4+)含量和表面吸附氧含量较低,使其吸附和活化氧能力降低,从而导致催化剂活性低于MnO_x-400;但是吸附和活化氧能力的降低有利于减缓反应产物的深度氧化,因而KA油的选择性增加.  相似文献   

5.
金催化剂催化环己烷液相选择氧化研究   总被引:6,自引:0,他引:6  
采用溶胶-凝胶法制备了一系列担载纳米金催化剂,用于催化环己烷液相选择氧化反应.在反应体系中没有加入任何溶剂或助催化剂,考察了反应温度、时间、压力和不同焙烧温度对催化剂活性的影响.实验结果表明,催化剂在250℃焙烧和金含量为0.032%时,环己烷选择氧化可以达到10.8%的转化率和90.8%的目的产物(环己醇和环己酮)选择性,相应转化频率高达5.2×104.  相似文献   

6.
环己烷液相亚硝化一步合成己内酰胺   总被引:2,自引:1,他引:1  
采用正交设计试验法对乙酸锰催化环己烷液相亚硝化一步合成己内酰胺的新反应进行了研究.考察了反应温度、反应时间、催化剂用量和反应物配比等因素对环己烷转化率和己内酰胺选择性的影响.结果表明,最佳的合成条件为:在81℃反应36 h,催化剂乙酸锰用量为环己烷质量的2.5%,亚硝基硫酸与发烟硫酸的质量比为1:3.在此优化的条件下,环己烷液相亚硝化反应的转化率为8.12%,目标产物己内酰胺的选择性达10.54%.  相似文献   

7.
钛基固体超强酸对环己酮乙二醇缩酮催化反应的特性   总被引:2,自引:1,他引:1  
合成S042-/TiO2、SO42-/TiO2-Ce(Ⅳ)、SO42-/TiO2-ZrO2三种不同的固体超强酸,以环己酮乙二醇缩酮为探针反应,发现550℃下焙烧的SO4 2-/TiO2-Ce(Ⅳ)催化活性最好.并以SO42-/TiO2-Ce(Ⅳ)为催化剂,考察反应温度、催化剂用量、反应时间、反应物配比和带水剂对缩酮化反应转化率和选择性的影响.结果表明,反应温度为110~125℃、催化剂用量占反应物料总质量的0.5%、环己酮和乙二醇物质的量比为1:1.5、反应时间为1 h、环己烷为带水剂时,环己酮的转化率达95.2%,环己酮乙二醇缩酮的选择性98.7%,催化剂的重复使用效果好.  相似文献   

8.
无溶剂体系中非均相催化剂催化环己烷氧化反应研究   总被引:1,自引:0,他引:1  
本文合成了苯乙烯-马来酸酐共聚物(SMA)桥联N-羟基邻苯二甲酰亚胺(NHPI)和Co/ZSM-5两种非均相催化剂, 用FT-IR、 XRD进行了结构表征. 考察了这两种非均相催化剂在无溶剂体系中对环己烷的催化氧化行为, 并对各反应因素的影响进行了研究. 结果表明: 在最佳反应条件下, 环己烷的转化率可达26.8%, 此时KA油、己二酸和环己基过氧化氢的选择性分别为71.6%、 10.9% 和2.6%. 在测试温度范围内, 反应速率常数Ka 和反应温度之间存在Arrhenius关系, 相关系数是0.9878, 数学表达式为lnKa = -3012/ T+ 1.279. 催化剂的稳定性研究显示两种非均相催化剂都具有很高的热力学稳定性, 可以重复使用五次.  相似文献   

9.
环己醇和环己酮俗称KA油,是用于制备尼龙材料的己二酸和己内酰胺的重要中间体.工业上制取环己醇和环己酮的方法主要为苯酚加氢法、环己烯水合法和环己烷氧化法,其中环己烷氧化法的应用最为普遍,包括硼酸氧化法、过氧化物氧化法和钴盐催化氧化法三种路线.为获得适宜的环己醇和环己酮选择性,工业上环己烷氧化单程转化率通常控制在5.0%以下,从而使得产物选择性在80%以上.因此,现有环己烷氧化法生产KA油的最大挑战是如何同时获得高环己烷转化率和高KA油选择性.迄今,已有多种催化剂被尝试用于环己烷氧化反应,包括金属卟啉、金属氧化物、分子筛、碳纳米管和金属-有机骨架材料等.由于均相催化剂无法从环己烷氧化反应体系中分离出来,导致催化剂不能重复利用,因此多相催化剂的研究更受青睐.另外,由于采用氧气为氧化剂时具有环境友好和更高的原子经济性,因此氧气选择性氧化环己烷反应已逐渐成为环己烷氧化法制KA油中最具挑战性的研究.目前,氧气为氧化剂时的环己烷转化率通常低于过氧化氢和叔丁基过氧化氢等为氧化剂时的转化率,其关键在于适用于固(催化剂)液(环己烷)气(氧化剂)反应体系的高性能催化剂.本课题组前期研究了系列金属掺杂分子筛(Ce/AlPO-5,Ce-MCM-41/48和Mg-Cu/SBA-15等)对氧气催化氧化环己烷的反应性能,发现无论是稀土还是过渡金属掺杂,通过影响环己烷氧化反应的自由基产生和反应历程,可显著提高环己烷转化率或者KA油的选择性.基于此,本文选择原料易得、成本较低和氧化能力强的氧化锰(MnOx)作为具有强氧化能力的过渡金属氧化物的代表,深入研究了MnOx的焙烧温度对其结构和选择性氧化环己烷反应性能的影响,同时研究了反应条件对催化剂性能的影响.结果表明,400℃焙烧制得的催化剂(MnOx-400)比350,450和500℃焙烧制得的催化剂具有更高的活性.在最佳反应条件(140℃,O2起始压力0.5 MPa,反应4 h)下,使用20 mg MnOx-400可使环己烷转化率达8.0%,KA油得率为5.0%.过高的反应温度、过长的反应时间和过高的反应压力都会导致产物被过度氧化,KA油选择性降低.另外,该催化剂重复使用10次,其活性没有明显下降,显示出了很好的稳定性.表征测试结果表明,MnOx催化剂在不同温度焙烧后形成了不同的结晶形态:焙烧温度小于500℃时,催化剂主要组成为Mn3O4和Mn5O8,500℃时主要为Mn3O4,Mn5O8和Mn2O3.而且随着焙烧温度升高,MnOx催化剂的比表面积逐渐降低.相比于350℃焙烧制得的催化剂,MnOx-400催化剂具有更好的结晶形态,这可能是造成其活性较好的原因.而相比于MnOx-400,500℃焙烧制得的催化剂表面Mn4+含量和表面吸附氧含量较低,使其吸附和活化氧能力降低,从而导致催化剂活性低于MnOx-400;但是吸附和活化氧能力的降低有利于减缓反应产物的深度氧化,因而KA油的选择性增加.  相似文献   

10.
熊海  石峰  邓友全 《催化学报》2004,25(11):887-891
 采用溶胶-凝胶法制备了系列负载型钴催化剂,并将其用于催化环己烷和甲苯选择氧化制备环己醇、环己酮和苯甲酸的反应. 考察了不同钴含量、催化剂焙烧温度、反应温度、反应时间和压力对催化剂活性的影响. 结果表明,在3%Co/Al(OH)x-150上环己烷的转化率为15.1%,环己醇和环己酮的选择性为91.2%; 在V(乙酸)∶V(甲苯)=1∶8的条件下,在1%Co/Al(OH)x-150上甲苯的转化率为48.9%,苯甲酸的选择性为96.1%. 采用AES,BET,XRD及XPS等技术对催化剂进行了表征.  相似文献   

11.
环己醇和环己酮(KA油)是制备尼龙所需材料己二酸和己内酰胺的重要中间体,也可用作油漆、农药和染料等的溶剂以及染色和褪光丝的均化剂等.工业上制取KA油的方法主要为苯酚加氢法、环己烯水合法和环己烷氧化法,其中环己烷氧化法最为普遍,是非常重要的工业过程.为获得适宜的KA油选择性,工业上普遍采用Co盐为催化剂,将环己烷氧化单程转化率控制在5.0%以下,从而使得产物选择性达到70%以上.该环己烷氧化制KA油过程不仅生产效率较低,而且所用均相催化剂因分离困难而不能重复使用.因此,当前关于环己烷氧化反应催化剂的研究均是围绕多相催化剂进行.氧气选择性氧化环己烷反应因具有更高的原子经济性而逐渐成为环己烷氧化法制KA油研究中最具挑战性的课题.该反应是自由基机理,而Co~(2+),Cr~(3+),Mn~(2+)和Ce~(2+)等金属离子可以促进自由基链反应,因此含有这些金属的多相催化剂被广泛用于该反应.另一方面,AlPO-n系列分子筛由于具有特殊的孔结构和一定的表面酸性,在催化反应中显示出较大的应用潜力.如果进行杂原子掺杂,通过改变分子筛骨架的电荷平衡,可以有效提高其表面酸性.例如磷酸硅铝分子筛(SAPO-5)具有中等强度的酸性和良好的择形性,因而作为固体酸催化剂广泛用于乙醇脱水、甲醇制烯烃、丙烯聚合和苯乙烯环氧化等反应,表现出较高的选择性和良好的稳定性.本文以传统均相Co盐催化剂的多相化为出发点,制备了Co掺杂SAPO-5与分子筛催化剂(Co-SAPO-5),考察了Co掺杂量对催化剂结构、表面性质以及氧气选择性氧化环己烷反应性能的影响.结果表明,一部分Co进入分子筛骨架,同时有少量Co以氧化钻形式高度分散在SAPO-5表面.Co掺杂对SAOP-5催化剂比表面积没有显著影响,但可使其孔体积减小.相反,Co掺杂可以提高SAOP-5分子筛表面B酸性位数量和总酸量.活性测试结果表明,环己烷转化率随着Co-SAPO-5催化剂中Co含量的增加而增加,但KA油选择性在转化率高于6.3%时急剧下降.还考察了反应温度、反应时间、初始氧气压力和催化剂用量对Co-SAPO-5分子筛催化剂性能的影响,得到了最优反应条件.以Co-SAPO-5-0.2(Co/Si摩尔比为0.2)分子筛为催化剂时,KA油总收率最高可达7.8%.另外,Co-SAPO-5催化剂在环己烷氧化反应中显示出很好的稳定性,Co-SAPO-5-0.2催化剂套用6次后活性几乎没有变化.  相似文献   

12.
 在机械混合的 MgO-Mg3(VO4)2, Mg3(VO4)2-Mg2V2O7 和 V2O5-MgV2O6 双晶相催化剂体系上, 研究了晶相间协同催化效应对环己烷氧化脱氢反应性能的影响. 催化剂表征和反应结果表明, 双晶相间协同效应或源于不同晶相间形成的内聚界面, 或遵从溢流氧的遥控机理, 或产生于其中一个晶相完全包覆整个催化剂表面. 当在 Mg3(VO4)2 上进行环己烷氧化脱氢反应时, 可加入适量 MgO 或 Mg2V2O7 以提高其催化性能. 在 80%Mg3(VO4)2-20%Mg2V2O7 催化剂上, 当环己烷转化率为 15.5% 时, 环己烯选择性达 44.9%.  相似文献   

13.
The selective catalytic reduction (SCR) of NO by propane in excess oxygen-containing gas mixture was studied on Co/Al2O3 catalyst. The oxygen concentration is very important for the reaction. The NO conversion to N2 without oxygen is 3% at 800 K and when the O2 concentration is raised up to 8% the NO conversion reaches its maximum value of 60% at 800 K. Characterization results by TPR and UV-Vis spectroscopy show that in the catalyst, species strongly interacting with tetrahedral and octahedral Co2+ ions in the support are present. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
由喷雾燃烧法制备含Ag2O质量分数为8%和12%的Ag2O/SiO2纳米复合催化剂,采用SEM、XRD和FT-IR技术对催化剂及其前驱体进行表征,考察样品焙烧、活化中形貌和微观结构的变化.表征结果显示了处理过程中样品粒径和活性中心等变化情况,且两个催化剂变化情形一致.以分子氧为氧化剂,采用气相环己烷一步环氧化生成环氧环己烷反应,对催化剂进行活性测试,考察Ag2O负载量、实验温度、O2和原料气流速对催化剂性能的影响,并将两个催化剂活性测试结果进行比较.结果表明,8%Ag2O/SiO2纳米复合催化剂催化性能优于12%Ag2O/SiO2纳米复合催化剂;一定实验条件下,用8%Ag2O/SiO2纳米复合催化剂进行催化,环己烷转化率低于9.2%时,环氧环己烷选择性最高可达95.2%.  相似文献   

15.
CuO nanoparticle was synthesized via wet chemical method and was characterized by X-ray diffraction(XRD),nitrogen adsorption-desorption,and scanning electron microscopy(SEM).Catalytic oxidation of cumene with molecular oxygen was studied over CuO nanoparticle.The catalysts showed markedly higher activities as compared to CuO prepared by conventional method,CuO/Al_2O_3,or ho- mogeneous copper catalyst under comparable reaction conditions.The cumene conversion,comene hy- droperoxide(CHP)yield,and selectivity using 0.25 g CuO nanoparticle catalyst and 0.1 mol cumene at 358 K for 7 h were 44.2%,41.2% and 93.2%,respectively.The catalyst can be recycled.After 6 recycled experiments,no loss of catalytic activity was observed.  相似文献   

16.
用共沉淀法制备了一组不同组成的MnxCo3-xO4尖晶石型复合氧化物,表面负载碱金属助剂制备改性催化剂,用于催化分解N2O.用X射线衍射(XRD)、N2物理吸附(BET)、红外光谱(FTIR)、扫描电镜(SEM)、H2程序升温还原(H2-TPR)、X射线光电子能谱(XPS)等技术表征催化剂结构.考察了复合氧化物组成、碱金属助剂类型、钾前驱物等制备参数对催化剂结构和催化活性的影响.结果表明:添加助剂K、Cs降低了催化剂表面Co、Mn元素的电子结合能,弱化了Co—O和Mn—O键,有利于氧物种的脱除,提高了催化剂活性.优化出了活性较高的催化剂K/Mn0.4Co2.6O4(K2CO3),有氧无水、有氧有水气氛400℃连续反应50 h,N2O转化率分别保持100%和74.2%,催化剂稳定性较高.  相似文献   

17.
A catalyst system consisting of palladium and a peroxo-heteropoly compound in methanol showed 81.6% selectivity for propylene oxide at 42.7% propylene conversion using molecular oxygen as oxidant in an autoclave reactor at 373 K for 6 h.  相似文献   

18.
改性Ag/α-Al_2O_3催化丙烯气相环氧化反应   总被引:1,自引:0,他引:1  
制备了以分子氧为氧化剂,对丙烯气相环氧化具有较好催化性能的改性负载银催化剂,并利用氧气程序升温脱附(O2-TPD)技术研究了氧在其表面上的脱附行为.实验结果表明:Ag/α-Al2O3催化剂只能使丙烯完全氧化成二氧化碳和水;当该催化剂用K2O改性后,可获得少量的环氧丙烷;Y2O3改性的Ag/α-Al2O3催化剂,可获得极少量的丙醛和丙酮;将0.1%(w)Y2O3添加到Ag-K2O/α-Al2O3后,可以显著提高催化剂的丙烯环氧化性能.在0.1MPa、245℃、20%C3H6/8%O2/72%N2和气体空速2000h-1的反应条件下,通过20%(w)Ag-0.1%Y2O3-0.1%K2O/α-Al2O3催化剂时,丙烯转化率为4.0%,环氧丙烷的选择性为46.8%.O2-TPD研究表明,少量的Y2O3、K2O或Y2O3-K2O作为助剂添加到20%Ag/α-Al2O3催化剂中时,减少了高温区与丙烯完全氧化有关的吸附氧物种的量,低温区余下的吸附氧物种量不变,有利于丙烯环氧化反应,提高了环氧丙烷的选择性.  相似文献   

19.
K+-SrO-La2O3/ZnO(KSLZ)催化体系具有很好的催化活性.在1073K反应温度下,其C2产率为18.2%,且C2选择性为68.3%.催化剂抗潮能力明显增加,在室温下经长期放置后,催化剂活性稳定.用XRD,CO2-TPD和XPS表征了KSLZ催化剂的体相组成及表面碱性、表面组成和表面活性氧物种.在此基础上讨论了La2O3,SrO和K+各组分对甲烷氧化偶联反应的作用,提出了表面碳酸盐分解生成活性氧物种的可能性.  相似文献   

20.
A variety of heterogeneous catalysts for the radical chain oxidation of cyclohexane has been prepared by immobilization of the well-defined cobalt acetate oligomers [py(3)Co(3)(mu(3)-O)(OH)(O(2)CCH(3))(5)](PF(6)) (1) and [py(4)Co(2)(OH)(2)(O(2)CCH(3))(3)](PF(6)) (2) on carboxy-modified mesoporous silica supports A-D by carboxylate exchange. The catalytic oxidation of cyclohexane with tert-butyl hydroperoxide (TBHP) in the presence of these homogeneous and immobilized cobalt acetate complexes afforded the corresponding alcohol and ketone in high yield. The immobilization of 1 and 2 results in a significant increase of catalytic activity. TBHP acts as a radical initiator and as source of molecular oxygen, which is also involved in the overall oxidation process. The rate of cyclohexane conversion is limited by the diffusion of molecular oxygen, and steady-state concentrations of cyclohexanone (K, ketone) and cyclohexanol (A, alcohol) are established; these determine the maximum K:A ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号