首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The reaction of [Mo(3)S(4)(H(2)O)(9)](4+) (1) with [(CpRhCl(2))(2)] afforded a novel rhodium-molybdenum cluster, [{Mo(3)RhCpS(4)(H(2)O)(7)(O)}(2)](8+) (2). X-ray structure analysis of [2](pts)(8).14H(2)O (pts(-) = CH(3)C(6)H(4)SO(3)(-)) has revealed the existence of a new oxo-bridged twin cubane-type core, (Mo(3)RhCpS(4))(2)(O)(2). The high affinity of the CpRh group for sulfur atoms in 1 seems to be the main driving force for this reaction. The strong Lewis acidity of the CpRh group in intermediate A, [Mo(3)RhCpS(4)(H(2)O)(9)](6+), caused a release of proton from one of the water molecules attached to the molybdenum atoms to give intermediate B, [Mo(3)RhCpS(4)(H(2)O)(8)(OH)](5+). The elimination of two water molecules from two intermediate B molecules, followed by the deprotonation reaction of hydroxo bridges, generated the twin cubane-type cluster 2. The formal oxidation states of rhodium and molybdenum atoms are the same before and after the reaction (i.e., Mo(IV)(3), Rh(III)). The Mo-O-Mo moieties in [2](pts)(8).14H(2)O are nearly linear with a bond angle of 164.3(3) degrees, and the basicity of the bridging oxygen atoms seems to be weak. For this reason, protonation at the bridging oxygen atoms does not occur even in a strongly acidic aqueous solution. The binding energy values of Mo 3d(5/2), Rh 3d(5/2), and C 1s obtained from X-ray photoelectron spectroscopy measurements for [2](pts)(8).14H(2)O are 229.8, 309.3, and 285 eV, respectively. The XPS measurements on the Rh 3d(5/2) binding energy indicate that the oxidation state of Rh is 3+. The binding energy of Mo 3d(5/2) (229.8 eV) compares with that observed for [1](pts)(4).7H(2)O (230.7 eV, Mo 3d(5/2)). A lower energy shift (0.9 eV) is observed in the binding energy of Mo 3d(5/2) for [2](pts)(8).14H(2)O. This energy shift may correspond to the coordination of an oxygen atom having a negative charge to the molybdenum atom.  相似文献   

2.
The reaction of molybdenum hexacarbonyl with C6H5CH2OC6H4ONa and Et4NBr in CH3CN at 60 ℃ afforded the di-nuclear Mo(0) compound [Et4N]3[Mo2(CO)6(μ-OC6H4OCH2- C6H5)3] 1. 1 crystallizes in monoclinic, space group P21/c with a=15.359(2), b=18.378(3), c=24.952(2)(A), β=102.268(4)°, V=6882.3(16) (A)3, Mr=1348.34, Z=4, Dc=1.301 g/cm3, F(000)=2832 and μ= 0.424 mm-1. The final R=0.0606 and wR=0.1552 for 9396 observed reflections (Ⅰ > 2σ(Ⅰ)). 1 contains a [Mo2O3]3- core in triangular bi-pyramidal configuration and each Mo atom adopts a distorted octahedral geometry with three carbon atoms from carbonyls and three μ-O atoms from C6H5CH2OC6H4O- bridging ligands. The Mo…Mo distance is 3.30(8) (A), indicating no metalmetal bonding. A formation pathway via forming a di-molybdenum(0) di-bridging OR compound [Mo2(μ-OR)2(CO)8]2- has been figured out and the reaction of Mo(CO)6 with alkoxide has also been discussed.  相似文献   

3.
The reaction of molybdenum hexacarbonyl with C6H5CH2OC6H4ONa and Et4NBr in CH3CN at 60 ℃ afforded the di-nuclear Mo(0) compound [Et4N]3[Mo2(CO)6(μ-OC6H4OCH2- C6H5)3] 1. 1 crystallizes in monoclinic, space group P21/c with a = 15.359(2), b = 18.378(3), c = 24.952(2), β = 102.268(4)°, V = 6882.3(16) 3, Mr = 1348.34, Z = 4, Dc = 1.301 g/cm3, F(000) = 2832 and μ = 0.424 mm-1. The final R = 0.0606 and wR = 0.1552 for 9396 observed reflections (I > 2σ(I)). 1 contains a [Mo2O3]3- core in triangular bi-pyramidal configuration and each Mo atom adopts a distorted octahedral geometry with three carbon atoms from carbonyls and three μ-O atoms from C6H5CH2OC6H4O- bridging ligands. The Mo…Mo distance is 3.30(8) , indicating no metal- metal bonding. A formation pathway via forming a di-molybdenum(0) di-bridging OR compound [Mo2(μ-OR)2(CO)8]2- has been figured out and the reaction of Mo(CO)6 with alkoxide has also been discussed.  相似文献   

4.
Sun C  Li Y  Wang E  Xiao D  An H  Xu L 《Inorganic chemistry》2007,46(5):1563-1574
By synthesizing the novel molybdenum arsenate complexes, we have obtained eight new structures, namely, (4,4'-bipy)[Zn(4,4'-bipy)2(H2O)2]2[(ZnO6)(AsIII3O3)2Mo6O18].7H2O, 1, [Zn(phen)2(H2O)]2[(ZnO6)(AsIII3O3)2Mo6O18].4H2O, 2, [Zn(2,2'-bipy)2(H2O)]2[(ZnO6)(AsIII3O3)2Mo6O18].4H2O, 3, [Zn(H4,4'-bipy)2(H2O)4][(ZnO6)(AsIII3O3)2Mo6O18].8H2O, 4, (H24,4'-bipy)[CuI(4,4'-bipy)]2[H2AsV2Mo6O26].H2O, 5, (H24,4'-bipy)3[AsV2Mo6O26].4H2O, 6, (H24,4'-bipy)3[AsV2Mo6O26(H2O)].4H2O, 7, and (H24,4'-bipy)2.5(H3O)[AsV2Mo6O26(H2O)].1.25H2O, 8 (4,4'-bipy = 4,4'-bipyridine, 2,2'-bipy = 2,2'-bipyridine, phen = 1,10-phenanthroline). These structures were determined by single-crystal X-ray diffraction analysis and were further characterized by elemental analysis, IR, XPS spectroscopy, and TG analysis. The structure of 1 is constructed from two-dimensional square gridlike sheets linked by the polyanions [(ZnO6)(AsIII3O3)2Mo6O18]4- via hydrogen-bonding interactions to form a three-dimensional supramolecular framework with two types of channels. Compounds 2 and 3 display similar bisupported structures. Compound 4 features a three-dimensional supramolecular architecture. Compound 5 possesses a 1D infinite ladderlike ribbon. Compounds 6-8 are discrete structures exhibiting three isomeric forms of [HxAs2Mo6O26](6-x)-. Furthermore, compound 8 represents a new isomer B'-[As2Mo6O26(H2O)]6-. In addition, the fluorescent properties of compounds 1-3 are reported.  相似文献   

5.
A new heptamolybdate polyoxometalate structure containing ruthenium(II) or osmium(II) metal centers, [M(II)(DMSO)(3)Mo(7)O(24)](4-) (M = Ru, Os), was synthesized by reaction between (NH(4))(6)Mo(7)O(24) and cis-M(DMSO)(4)Cl(2). X-ray structure analysis revealed the complexes to contain a ruthenium/osmium center in a trigonal antiprismatic coordination mode bound to three DMSO moieties via the sulfur atom of DMSO and three oxygen atoms of the new heptamolybdate species. The heptamolybdate consists of seven condensed edge-sharing MoO(6) octahedra with C(2v) symmetry. Three Mo atoms are in classic type II octahedra with a cis dioxo configuration. Two Mo atoms are also type-II-like, but one of the short Mo-O bonds is associated with bridging oxygen atoms rather than terminal oxygen atoms. Two molybdenum atoms are unique in that they are in a trigonally distorted octahedral configuration with three short Mo-O bonds and two intermediate-long M-O bonds and one long Mo-O bond. The [M(II)(DMSO)(3)Mo(7)O(24)](4-) polyoxometalates were effective and in some cases highly selective catalysts for the aerobic oxidation of alcohols to ketones/aldehydes. The integrity of the polyoxometalate was apparently retained at high turnover numbers and throughout the reaction, and a variation of an oxometal type mechanism was proposed to explain the results.  相似文献   

6.
A series of sterically varied aryl alcohols H-OAr [OAr = OC6H5 (OPh), OC6H4(2-Me) (oMP), OC6H3(2,6-(Me))2 (DMP), OC6H4(2-Pr(i)) (oPP), OC6H3(2,6-(Pr(i)))2 (DIP), OC6H4(2-Bu(t)) (oBP), OC6H3(2,6-(Bu(t)))2 (DBP); Me = CH3, Pr(i) = CHMe2, and Bu(t) = CMe3] were reacted with LiN(SiMe3)2 in a Lewis basic solvent [tetrahydrofuran (THF) or pyridine (py)] to generate the appropriate "Li(OAr)(solv)x". In the presence of THF, the OPh derivative was previously identified as the hexagonal prismatic complex [Li(OPh)(THF)]6; however, the structure isolated from the above route proved to be the tetranuclear species [Li(OPh)(THF)]4 (1). The other "Li(OAr)(THF)x" products isolated were characterized by single-crystal X-ray diffraction as [Li(OAr)(THF)]4 [OAr = oMP (2), DMP (3), oPP (4)], [Li(DIP)(THF)]3 (5), [Li(oBP)(THF)2]2, (6), and [Li(DBP)(THF)]2, (7). The tetranuclear species (1-4) consist of symmetric cubes of alternating tetrahedral Li and pyramidal O atoms, with terminal THF solvent molecules bound to each metal center. The trinuclear species 5 consists of a six-membered ring of alternating trigonal planar Li and bridging O atoms, with one THF solvent molecule bound to each metal center. Compound 6 possesses two Li atoms that adopt tetrahedral geometries involving two bridging oBP and two terminal THF ligands. The structure of 7 was identical to the previously reported [Li(DBP)(THF)]2 species, but different unit cell parameters were observed. Compound 7 varies from 6 in that only one solvent molecule is bound to each Li metal center of 7 because of the steric bulk of the DBP ligand. In contrast to the structurally diverse THF adducts, when py was used as the solvent, the appropriate "Li(OAr)(py)x" complexes were isolated as [Li(OAr)(py)2]2 (OAr = OPh (8), oMP (9), DMP (10), oPP (11), DIP (12), oBP (13)) and [Li(DBP)(py)]2 (14). Compounds 8-13 adopt a dinuclear, edge-shared tetrahedral complex. For 14, because of the steric crowding of the DBP ligand, only one py is coordinated, yielding a dinuclear fused trigonal planar arrangement. Two additional structure types were also characterized for the DIP ligand: [Li(DIP)(H-DIP)(py)]2 (12b) and [Li2(DIP)2(py)3] (12c). Multinuclear (6,7Li and 13C) solid-state MAS NMR spectroscopic studies indicate that the bulk powder possesses several Li environments for "transitional ligands" of the THF complexes; however, the py adducts possess only one Li environment, which is consistent with the solid-state structures. Solution NMR studies indicate that "transitional" compounds of the THF precursors display multiple species in solution whereas the py adducts display only one lithium environment.  相似文献   

7.
1 INTRODUCTIONSincethiolateligandwasintroducedintomolybdenumcarbonylcompoundin1 984 [1],theinvestigationonlow valenceMo -SRcompoundshasreceivedattentionforthiskindoflow valencecompoundspossesscertainadvantageoncompoundsyn thesis,moleculestructureandphysicala…  相似文献   

8.
1 INTRODUCTION Recent years have seen a drastic increase of compounds containing the Mo3S4 core. A major synthetic route to these compounds is by the reaction of the aqua ion [Mo3S4(H2O)9]4+ with different kinds of ligands replacing some or all of the water molecules. In this way, Mo3S4(dtp)4(H2O), which was synthesized by the spontaneous- assembly method in 1986[1] and its structural characterization and chemical reactivity have been well recognized [2], can be rationally synthesize…  相似文献   

9.
The coordination chemistry of 2,2'-dipyridyl diselenide (PySeSePy) (2) (C(10)H(8)N(2)Se(2)) has been investigated and its crystal structure has been determined (monoclinic, P2(1)/c, a = 10.129(2) ?, b = 5.7332(12) ?, c = 19.173(3) ?, beta = 101.493(8) degrees, Z = 4). In metal complexes the ligand was found to coordinate in three different modes, as also confirmed by X-ray structure determination. N,N'-coordination was found in the zinc complex [Zn(PySeSePy)Cl(2)] (3) (C(10)H(8)Cl(2)N(2)Se(2)Zn, triclinic, P&onemacr;, a = 7.9430(10) ?, b = 8.147(2) ?, c = 11.999(2) ?, alpha = 93.685(10) degrees, beta = 107.763(10) degrees, gamma = 115.440(10) degrees, Z = 2) and Se,Se'-coordination in the adduct of the ligand with bis(pentafluorophenyl)mercury(II) [PySeSePyHg(C(6)F(5))(2)] (5) (C(10)H(8)F(10)HgN(2)Se(2), monoclinic, P2(1)/n, a = 7.7325(10) ?, b = 5.9974(14) ?, c = 25.573, beta = 98.037(10) degrees, Z = 2), which however displays only weak interactions between selenium and mercury. The reaction of the ligand with norbornadiene carbonyl complexes of molybdenum and tungsten leads to reductive cleavage of the selenium-selenium bond with oxidation of the metal center and concomitant addition of the resulting selenolate to the metal carbonyl fragment. Thus the 7-coordinate complexes [Mo(SePy)(2)(CO)(3)] (6) (C(13)H(8)MoN(2)O(3)Se(2), monoclinic, P2(1)/n, a = 9.319(3) ?, b = 12.886(5) ?, c = 13.231(6) ?, beta = 109.23(3) degrees, Z = 4) and [W(SePy)(2)(CO)(3)] (7) (C(13)H(8)N(2)O(3)Se(2)W, monoclinic, P2(1)/n, a = 9.303(2) ?, b = 12.853(2) ?, c = 13.232(2) ?, beta = 109.270(10) degrees, Z = 4) were obtained. The same N,Se-coordination pattern emerges from the reaction of [Fe(2)(CO)(9)] with (2) leading to [Fe(SePy)(2)(CO)(2)] (8) (C(12)H(8)FeN(2)O(2)Se(2), monoclinic, P&onemacr;, a = 8.6691(14) ?, b = 12.443(2) ?, c = 14.085(2) ?, alpha = 105.811(10) degrees, beta = 107.533(8) degrees, gamma = 92.075(10) degrees, Z = 4).  相似文献   

10.
The reactions of the binuclear oxomolybdenum(V) complex [Cl(2)(O)Mo(&mgr;-OEt)(2)(&mgr;-HOEt)Mo(O)Cl(2)] (1) with Me(3)Si(allyl) and SbF(3) produce the compounds [Mo(6)O(6)Cl(6)(&mgr;(3)-O)(2)(&mgr;(2)-OEt)(6)(&mgr;(2)-Cl)(2)] (2) and [Mo(8)O(8)Cl(6)(&mgr;(3)-O)(4)(OH)(2)(&mgr;(2)-OH)(4)(&mgr;(2)-OEt)(4)(HOEt)(4)] (3), respectively. Treatment of 1 with the Lewis base PMe(3) affords the tetrameric complex [Mo(4)O(4)Cl(4)(&mgr;(2)-OEt)(4)(HOEt)(2)(&mgr;(3)-O)(2)] (4), which represents another link in the chain of clusters produced by the reactions of 1 and simulating the build-up of polymeric molybdenum oxides by sol-gel methods. The crystal structure of 4 has been determined [C(12)H(32)Cl(4)Mo(4)O(12), triclinic, P&onemacr;, a = 7.376(2) ?, b = 8.807(3) ?, c = 11.467(4) ?, alpha = 109.61(1) degrees, beta = 92.12(3) degrees, gamma = 103.75(2) degrees, Z = 1]. By contrast, reaction of 1 with the nitrogen base NEt(3), followed by treatment with [PPN]Cl.2H(2)O ([PPN](+) = [Ph(3)P=N=PPh(3)](+)), gives the complex [PPN](+)[Et(3)NH](+)[Cl(2)(O)Mo(&mgr;(2)-O)(2)Mo(O)Cl(2)](2)(-) (6) in 90% yield. Its crystal structure [C(36)H(30)Cl(4)MoNOP(2), triclinic, Pna2(1), a = 21.470(6) ?, b = 16.765(2) ?, c = 9.6155(14) ?, alpha = 90 degrees, beta = 90 degrees, gamma = 90 degrees, Z = 16] includes the anion [Cl(2)(O)Mo(&mgr;(2)-O)(2)Mo(O)Cl(2)](2)(-), which is a charged derivative of the species forming the gels in sol-gel processes starting from chloromolybdenum ethoxides. Furthermore, compound 1 is found to be catalytically active in esterification and dehydration reactions of alcohols.  相似文献   

11.
Yu K  Zhou BB  Yu Y  Su ZH  Yang GY 《Inorganic chemistry》2011,50(5):1862-1867
A new layered molybdenum cobalt phosphate, Na(2)[Co(H(2)O)(6)][(Mo(16)O(32))Co(16)(PO(4))(4) (HPO(4))(16)(H(2)PO(4))(4)(OH)(4)(C(10)H(8)N(2))(4)(C(5)H(4)N)(2)(H(2)O)(6)]·4H(2)O (1), has been hydrothermally synthesized and structurally characterized. 1 crystallizes in the monoclinic space group P2(1)/n with a = 15.6825(18) ?, b = 39.503(4) ?, c = 17.2763(17) ?, β = 93.791(2)°, V = 10679.4(18) ?(3), and Z = 2. A polyoxoanion of 1 exhibits an unusual organic-inorganic hybrid wheel-type cluster, in which two pyridine ligands link to the surface Co(II) atoms of a [H(24)(Mo(16)O(32))Co(16)(PO(4))(24)(OH)(4)(H(2)O)(6)] (namely, {Mo(16)Co(16)P(24)}) wheel via the Co-N bonds. Furthermore, each {Mo(16)Co(16)P(24)} wheel is connected to four adjacent wheels by four pairs of 4,4'-bipyridine linkers, forming a 2D layered network. The susceptibility measurement shows the existence of dominant antiferromagnetic interactions in 1.  相似文献   

12.
NO[Al(OC(CF(3))(2)Ph)(4)] 1 and NO[Al(OC(CF(3))(3))(4)] 2 were obtained by the metathesis reaction of NO[SbF(6)] and the corresponding Li[Al(OR)(4)] salts in liquid sulfur dioxide solution in ca 40% (1) and 85% (2) isolated yield. 1 and 2, as well as Li[NO(3)] and N(2)O, were also given by the reaction of an excess of mixture of (90 mol%) NO, (10 mol%) NO(2) with Li[Al(OR)(4)] followed by extraction with SO(2). The unfavourable disproportionation reaction of 2NO(2)(g) to [NO](+)(g) and [NO(3)](-)(g)[DeltaH degrees = +616.2 kJ mol(-1)] is more than compensated by the disproportionation energy of 3NO(g) to N(2)O(g) and NO(2)(g)[DeltaH degrees =-155.4 kJ mol(-1)] and the lattice energy of Li[NO(3)](s)[U(POT)= 862 kJ mol(-1)]. Evidence is presented that the reaction proceeds via a complex of [Li](+) with NO, NO(2)(or their dimers) and N(2)O. NO(2) and Li[Al(OC(CF(3))(3))(4)] gave [NO(3)(NO)(3)][Al(OC(CF(3))(3))(4)](2), NO[Al(OC(CF(3))(3))(4)] and (NO(2))[Al(OC(CF(3))(3))(4)] products. The aluminium complex [Li[AlF(OC(CF(3))(2)Ph)(3)]](2) 3 was prepared by the thermal decomposition of Li[Al(OC(CF(3))(2)Ph)(4)]. Compounds 1 and 3 were characterized by single crystal X-ray structural analyses, 1-3 by elemental analyses, NMR, IR, Raman and mass spectra. Solid 1 contains [Al(OC(CF(3))(2)Ph)(4)](-) and [NO](+) weakly linked via donor acceptor interactions, while in the SO(2) solution there is an equilibrium between the associated [NO](+)[Al(OC(CF(3))(2)Ph)(4)](-) and separated solvated ions. Solid 2 contains essentially ionic [NO](+) and [Al(OC(CF(3))(3))(4)](-). Complex 3 consists of two [Li[AlF(OC(CF(3))(2)Ph)(3)]] units linked via fluorine lithium contacts. Compound 1 is unstable in the SO(2) solution and decomposes to yield [AlF(OC(CF(3))(2)Ph)(3)](-), [(PhC(CF(3))(2)O)(3)Al(mu-F)Al(OC(CF(3))(2)Ph)(3)](-) anions as well as (NO)C(6)H(4)C(CF(3))(2)OH, while compound 2 is stable in liquid SO(2). The [small nu](NO(+)) in 1 and [NO](+)(toluene)[SbCl(6)] are similar, implying similar basicities of [Al(OC(CF(3))(2)Ph)(4)](-) and toluene.  相似文献   

13.
Kong Z  Weng L  Tan D  He H  Zhang B  Kong J  Yue B 《Inorganic chemistry》2004,43(18):5676-5680
The hydrothermal reaction of (NH(4))(6)Mo(7)O(24).4H(2)O, CuCl(2).2H(2)O, and 4,4'-bipyridine yields bipyridine-ligated copper-trimolybdate monohydrate [Cu(4,4'-bipy)(H(2)O)(Mo(3)O(10))].H(2)O in the monoclinic system with space group of C(2/c) and cell parameters of a = 15.335(2) A, b = 15.535(2) A, c = 15.106(2) A, beta = 101.162(2) degrees, V = 3530.7(9) A(3), and Z = 8. Its structure consists of one-dimensional infinite ([Mo3O10]2-)( infinity ) chains linked through [Cu2(H2O)2(4,4'-bipy)] units. The Mo-O chain contains distorted [MoO(6)] octahedra connected through corner-sharing oxygen atoms into infinite chains along the c direction and each chain is located in the channel formed by four adjacent crossing chains of [Cu(4,4'-bipy)(H2O)](n)(2n+). The crystal shows weak conductivity through Mo-O chain along the c direction and insulating property along either a or b direction. Furthermore, a crystalline bimetallic oxide, CuMo3O10, forms when the title compound undergoes thermal treatment in N(2) atmosphere after the complete removal of the ligands.  相似文献   

14.
The phosphide-bridged dimolybdenum complexes (H-DBU)[Mo2Cp2(mu-PR2)(CO)4] (R= Cy, Ph; DBU = 1,8-diazabicyclo[5.4.0.]undec-7-ene) react with p-benzoquinone to give the hemiquinone complexes [Mo(2)Cp2(OC6H4OH)(mu-PR2)(CO)4]. The latter experience facile homolytic cleavage of the corresponding Mo-O bonds and react readily at room temperature with HSPh or S2Ph2 to give the thiolate complexes [Mo2Cp2(mu-PCy2)(mu-SPh)(CO)4] or [Mo2Cp2(mu-PR2)(mu-SPh)(CO)2]. In contrast, PRH-bridged substrates experience overall insertion of quinone into the P-H bond to give the anionic compounds (H-DBU)[Mo(2)Cp2{mu-PR(OC6H4OH)}(CO)4], which upon acidification yield the corresponding neutral hydrides. The cyclohexyl anion experiences rapid nucleophilic displacement of the hemiquinone group by different anions ER- (ER = OH, OMe, OC4H5, OPh, SPh) to give novel anionic compounds (H-DBU)[Mo2Cp2{mu-PCy(ER)}(CO)4], which upon acidification yield the corresponding neutral hydrides. The structure of four of these hydride complexes [PPh(OC6H4OH), PCy(OH), PCy(OMe), and PCy(OPh) bridges] was determined by X-ray diffraction methods and confirmed the presence of cis and trans isomers in several of these complexes. In addition, it was found that the hydroxyphosphide anion [Mo2Cp2{mu-PCy(OH)}(CO)4]- displays in solution an unprecedented tautomeric equilibrium with its hydride-oxophosphinidene isomer [Mo2Cp2(mu-H){mu-PCy(O)}(CO)4]-.  相似文献   

15.
Shivaiah V  Das SK 《Inorganic chemistry》2005,44(24):8846-8854
Two Anderson-type heteropolyanion-supported copper phenanthroline complexes, [Al(OH)6Mo6O18[Cu(phen)(H2O)2]2]1+ (1c) and [Al(OH)6Mo6O18[Cu(phen)(H2O)Cl]2]1- (1a) complement their charges in one of the title compounds [Al(OH)6Mo6O18[Cu(phen)(H2O)2]2][Al(OH)6Mo6O18[Cu(phen)(H2O)Cl]2].5H2O [1c][1a].5 H2O 1. Similar charge complementarity exists in the chromium analogue, [Cr(OH)6Mo6O18[Cu(phen)(H2O)2]2][Cr(OH)6Mo6O18[Cu(phen)(H2O)Cl]2].5 H2O [2c][2a].5 H2O 2. The chloride coordination to copper centers of 1a and 2a makes the charge difference. In both compounds, the geometries around copper centers are distorted square pyramidal and those around aluminum/chromium centers are distorted octahedral. Three lattice waters, from the formation of intermolecular O-H.....O hydrogen bonds, have been shown to self-assemble into an "acyclic water trimer" in the crystals of both 1 and 2. The title compounds have been synthesized in a simple one pot aqueous wet-synthesis consisting of aluminum/chromium chloride, sodium molybdate, copper nitrate, phenanthroline, and hydrochloric acid, and characterized by elemental analyses, EDAX, IR, diffuse reflectance, EPR, TGA, and single-crystal X-ray diffraction. Both compounds crystallize in the triclinic space group P. Crystal data for 1: a = 10.7618(6), b = 15.0238(8), c = 15.6648(8) angstroms, alpha = 65.4570(10), beta = 83.4420(10), gamma = 71.3230(10), V = 2182.1(2) angstroms3. Crystal data for 2: a = 10.8867(5), b = 15.2504(7), c = 15.7022(7) angstroms, alpha = 64.9850(10), beta = 83.0430(10), gamma = 71.1570(10), V = 2235.47(18) angstroms3. In the electronic reflectance spectra, compounds 1 and 2 exhibit a broad d-d band at approximately 700 nm, which is a considerable shift with respect to the value of 650-660 nm for a square-pyramidal [Cu(phen)2L] complex, indicating the coordination of [M(OH)6Mo6O18]3- POM anions (as a ligand) to the monophenanthroline copper complexes to form POM-supported copper complexes 1c, 1a, 2c, and 2a. The ESR spectrum of compound 1 shows a typical axial signal for a Cu2+ (d9) system, and that of compound 2, containing both chromium(III) and copper(II) ions, may reveal a zero-field-splitting of the central Cr3+ ion of the Anderson anion, [Cr(OH)6Mo6O18]3-, with an intense peak for the Cu2+ ion.  相似文献   

16.
Two new copper 2-pyrazinecarboxylate (2-pzc) coordination polymers incorporating [Mo(8)O(26)](4-) and [V(10)O(28)H(4)](2-) anions were synthesized and structurally characterized: Cu(4)(2-pzc)(4))(H(2)O)(8)(Mo(8)O(26)).2H(2)O (1) and Cu(3)(2-pzc)(4)(H(2)O)(2)(V(10)O(28)H(4)).6.5H(2)O (2). Crystal data: 1, monoclinic, space group P2(1)/n, a = 11.1547(5) A, b = 13.4149(6) A, c = 15.9633(7) A, beta = 90.816(1) degrees; 2, triclinic, space group P1, a = 10.5896(10) A, b = 10.7921(10) A, c = 13.5168(13) A, alpha = 104.689(2) degrees, beta = 99.103(2) degrees, gamma = 113.419(2) degrees. Compound 1 contains [Cu(2-pzc)(H(2)O)(2)] chains charge-balanced by [Mo(8)O(26)](4-) anions. In compound 2, layers of [Cu(3)(2-pzc)(4)(H(2)O)(2)] form cavities that are filled with [V(10)O(28)H(4)](2-) anions. The magnetic properties of both compounds are described.  相似文献   

17.
Jiang HL  Xie Z  Mao JG 《Inorganic chemistry》2007,46(16):6495-6501
Two new nickel(II) molybdenum(VI) selenium(IV) and tellurium(IV) oxides generally formulated as Ni3(Mo2O8)(XO3) (X = Se, Te) have been synthesized by solid-state reactions of NiO, MoO3, and SeO2 (or TeO2). Both compounds feature 3D network structures built of [Mo4O16]8- tetranuclear cluster units and 2D nickel(II) selenite or tellurite layers. The nickel(II) selenite layer in Ni3(Mo2O8)(SeO3) is formed by [Ni6O22]32- hexanuclear clusters interconnected by selenite groups whereas the thick nickel(II) tellurite layer in Ni3(Mo2O8)(TeO3) is constructed by corrugated nickel(II) oxide chains bridged by the tellurite groups. The results of magnetic property measurements indicate that there are considerable ferromagnetic interactions between nickel(II) centers in both compounds. Their optical properties and band structures have been also studied.  相似文献   

18.
Reaction of Mo(CO)6 with p-H3CO-C6H4SNa and Et4NCl · H2O in CH3CN afforded a dinuclear molybdenum(0) compound [Et4N]2[Mo2 (CO)8 (SC6H4-OCH3-p)2] (1). The crystal structure was determined by X-ray diffraction. The crystallographic data: C38H54Mo2N2O10S2, Mr = 954.87, triclinic, P-1, a = 11.348 (7), b =11.616(5), c=10.065(7) A, a=113.86(4), β=111.39(5), γ=91.92(5)°, V=1104.0(1) A3, Z=1, Dc=1.44 g/cm3, F(000)=492, μ=7.0cm-1, Final R=0. 046 and Rw=0. 049 for 2657 reflections with I>3. Oσ(I). The X-ray structure analysis revealed that the Mo2S2 core of 1 is planar. The geometry around each Mo atom is a distorted octahedron, the two octahedrons form an edge-sharing bioctahedron. The bond. In addition, the 95Mo NMR chemical shift of 1 is discussed.  相似文献   

19.
Mechanochemical reaction of cluster coordination polymers 1infinity[M3Q7Br4] (M = Mo, W; Q = S, Se) with solid K2C2O4 leads to cluster core excision with the formation of anionic complexes [M3Q7(C2O4)3]2-. Extraction of the reaction mixture with water followed by crystallization gives crystalline K2[M3Q7(C2O4)3].0.5KBr.nH2O (M = Mo, Q = S, n = 3 (1); M = Mo, Q = Se, n = 4 (2); M = W, Q = S, n = 5 (3)). Cs2[Mo3S7(C2O4)3].0.5CsCl.3.5H2O (4) and (Et4N)1.5H0.5K{[Mo3S7(C2O4)3]Br}.2H2O (5) were also prepared. Close Q...Br contacts result in the formation of ionic triples {[M3Q7(C2O4)3](2)Br}5- in 1-4 and the 1:1 adduct {[Mo3S7(C2O4)3]Br}3- in 5. Treatment of 1 or 2 with PPh(3) leads to chalcogen abstraction with the formation of [Mo3(mu3-Q)(mu2-Q)3(C2O4)3(H2O)3]2-, isolated as (Ph4P)2[Mo3(mu3-S)(mu2-S)3(C2O4)3(H2O)3].11H2O (6) and (Ph4P2[Mo3(mu3-Se)(mu2-Se)3(C2O4)3(H2O)3].8.5H2O.0.5C2H5OH (7). All compounds were characterized by X-ray structure analysis. IR, Raman, electronic, and 77Se NMR spectra are also reported. Thermal decomposition of 1-3 was studied by thermogravimetry.  相似文献   

20.
1INTRODUCTIONTheexistenceandsignificanceofthemolybdenum sulfurbondinginmolybdenumenzymes〔1〕havestimulatedthestudiesonthechemi...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号