首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 146 毫秒
1.
通过在线跟踪水滴在凹槽状聚二甲基硅氧烷(PDMS)基底上的挥发行为, 研究了蒸馏水的挥发规律Cassie-Wenzel转变行为. 结果表明, 初始阶段, 水滴处于Cassie状态, 且在垂直于凹槽方向(V)和平行于凹槽方向(P)上存在显著的各向异性. 水滴的挥发过程依次表现出接触直径不变模式、 接触角不变模式及共同减小模式, 与平滑基底上水滴的挥发规律类似. 在挥发过程中, 发生了Cassie-Wenzel转变, 转变发生的时间与PDMS基底上突起部分的面积分数(即固相率)呈现良好的线性关系. 随着挥发的进行, 水滴的各向异性在接触角不变模式阶段消失, 即挥发导致水滴从开始的椭球缺状变为球缺状.  相似文献   

2.
吕席卷  张韫宏 《化学学报》2020,78(4):326-329
大气颗粒物中挥发性物质的气粒分配问题是大气科学研究的热点.选择典型的高粘度态模型体系、硝酸铵/蔗糖体系以及硝酸铵/硫酸镁体系,利用光镊-受激拉曼光谱技术原位获得液滴的自发拉曼和受激拉曼信号,同时观察回音壁(WGM)模式,利用米氏散射理论对一系列的WGMs峰位在给定范围内的粒子半径和折射率进行模拟计算,通过Maxwell方程精确计算了两个体系中硝酸铵在不同相对湿度(RH)下的有效饱和蒸汽压值,结果表明,在低湿度下的超粘态液滴中硝酸铵的有效饱和蒸汽压比纯硝酸铵的饱和蒸汽压低1~3个数量级.显然,低相对湿度下,液滴中硝酸铵的挥发受到了抑制.  相似文献   

3.
针对在共聚焦拉曼测量中激光在球形液滴中的聚焦问题建立理论模型, 推导出激光焦点在球形液滴中的穿透深度公式, 将激光焦点在球形液滴中的实际穿透深度和拉曼平台的垂直移动距离关联起来. 研究表明, 平台移动距离和激光焦点移动距离是非线性的, 激光焦点分别聚焦于液滴上表面和球心处时, 激光焦点的移动距离等于平台移动距离, 而当激光焦点在液滴上表面和液滴球心之间时, 激光焦点的移动距离大于平台移动距离. 并利用此结论初步获得MgSO4球形液滴胶态结构的空间分布信息. 发现MgSO4液滴在低湿度下形成的胶态结构是具有一定厚度的壳状结构, 且其厚度与液滴所处环境的相对湿度有关.  相似文献   

4.
通过图案化自组装膜导向的电沉积制备了聚吡咯(PPy)微结构. 由微接触印刷方法制备图案化自组装膜并作为电沉积的模板. 研究发现, 自组装膜在导向电沉积中在不同的基底上具有不同的作用: 在十二烷基硫醇(DDT)、十八烷基硫醇(ODT)修饰的金基底上和十八烷基三氯硅烷(OTS)修饰的铟锡氧化物玻璃上(ITO), 电沉积主要发生在自组装膜未修饰区, 而在半导体单晶硅表面, PPy沉积在OTS修饰区, 是基底表面的导电性及PPy与基底表面基团相容性共同作用的结果.  相似文献   

5.
超疏水表面上冷凝液滴发生弹跳的机制与条件分析   总被引:1,自引:0,他引:1  
使用液滴合并前后的体积和表面自由能守恒作为两个限制条件,确定了合并液滴的初始形状,即为偏离平衡态的亚稳态液滴,具有缩小其底半径而向平衡态液滴转变的推动力.进而分析了液滴变形过程中的推动力和三相线(TPCL)上的滞后阻力,建立了液滴变形的动态方程并进行了差分求解.如果液滴能够变形至底半径为0mm的状态,则根据该状态下液滴重心上移的速度确定液滴的弹跳高度.不同表面上冷凝液滴合并后的变形行为的计算结果表明,光滑表面上的液滴合并后,液滴只能发生有限的变形,一般都在达到平衡态之前就停止了变形,因此冷凝液滴不会发生弹跳;粗糙表面上的Wenzel态液滴的三相线上的滞后阻力更大,因而液滴更难以变形和弹跳;具有微纳二级结构表面上只润湿微米结构,但不润湿纳米结构的部分Wenzel态液滴能够变形至Cassie态,但没有明显的弹跳;只有在纳米或微纳二级结构表面上的较小Cassie态液滴合并后,液滴易于变形至底半径为0mm的状态并发生弹跳.因此,Cassie态合并液滴处于亚稳态,并且其三相线上的移动阻力很小,是导致冷凝液滴弹跳的关键因素.  相似文献   

6.
细胞图案化是一种研究和控制细胞行为的有效实验方法, 广泛用于细胞生物学、组织工程学、药物筛选和创伤治疗等各个研究领域. 介绍了各种细胞图案化的制备方法, 并对细胞图案化中涉及的特征物质以及有关动态基底作了简要评述.  相似文献   

7.
喷墨打印高精度图案研究进展   总被引:5,自引:0,他引:5  
邝旻旻  王京霞  王利彬  宋延林 《化学学报》2012,70(18):1889-1896
近年来, 功能材料的图案化及其在高性能光电器件的应用研究受到了广泛关注. 与传统图案化方法相比, 喷墨打印技术更容易实现大面积复杂图案的直接书写和复合功能材料的图案化, 且制备简便, 成本低廉, 使其成为最受关注的图案化方法之一. 综述了近年来喷墨打印制备高精度图案的研究进展. 包括通过优化墨滴的化学组成、调控基材的化学或物理结构以及改进喷墨设备等方法以提高喷墨打印分辨率; 以及通过控制液滴内部的毛细流动和三相接触线的移动抑制喷墨液滴的“咖啡环”效应, 以实现均质打印. 文章最后展望了喷墨打印制备高精度图案的研究发展方向. 这些工作对于实现高性能器件的制备具有重要意义.  相似文献   

8.
以高速摄像仪与显微拉曼光谱联用研究聚四氟(疏水)乙烯基底和石英(亲水)基底上的单个海水液滴的快速风化过程.海水液滴风化的形貌图像达到毫秒时间分辨率和微米空间分辨率.通入干氮气后海水液滴在石英基底上发生快速风化过程,首先析出Na2Ca5(SO4)6·3H2O和Na2xCa8-x(SO4)6·3H2O(0<x<1)晶体,然后析出NaCI晶体,最后析出KMgCl3·6H2O晶体.我们发现在快速降低湿度的过程中析出钙钠复盐,在缓慢降低湿度的过程中析出CaSO4·2H2O,并已经确定各种结晶产物的位置以及Na2Ca5(SO4)6·3H2O和CaSO4· 2H2O两种晶体的生长速率,并在聚四氟乙烯基底上观察到中空结构的海盐颗粒.  相似文献   

9.
考察了金属表面液滴性质对微液滴形成的影响并探讨了微液滴的来源. 不同pH值液滴附近微液滴形成特征表明, 高电位阴极区氧还原反应是微液滴形成的原因之一. 此外, 研究结果表明, 微液滴是由主液滴挥发的水蒸气经过气相“迁移”至主液滴附近金属表面上重新吸附凝聚形成的.  相似文献   

10.
研究了光缔合过程中OH分子基电子态的振转态选择性跃迁. 计算结果表明通过选择适当的初始碰撞能与光场参数,两碰撞原子可以利用三光子、四光子与九光子跃迁,从连续态跃迁至目标态. 通过选取较低的光场频率,增加跃迁至目标态的光子数来控制分子布居跃迁至较低的振转态. 在光缔合过程中, 部分缔合的分子通过中间态与背景态重新发生解离,解离过程降低了目标态的布居分布.  相似文献   

11.
The stability of wetting states, namely the Cassie state (partial wetting) and the Wenzel state (complete wetting) of surfaces with protrusions, is determined by comparing the total free energy of a liquid drop in terms of their apparent contact angles for different protrusion features. It is found that when the area fraction of the topographical features and the intrinsic contact angle for a flat surface are large, the Cassie state is favored, but it can be either the metastable or stable state. It is shown that the transition from the Cassie state to the Wenzel state requires the application of a pressure to the meniscus between the surface protrusions. The critical transition pressure increases not only with increasing area fraction and intrinsic contact angle, but also with decreasing protrusion size. During the transition, a high-pressure gas can be trapped around the protrusions that can cause the Cassie state to be recovered after the release of the applied pressure. The analysis shows that a droplet can 'hang' upside-down when the protrusion size is very small; namely, the protrusions can pin the meniscus. These results are discussed relative to the advancing and receding contact angle.  相似文献   

12.
A series of pillar-like patterned silicon wafers with different pillar sizes and spacing are fabricated by photolithography and further modified by a self-assembled fluorosilanated monolayer. The dynamic contact angles of water on these surfaces are carefully measured and found to be consistent with the theoretical predictions of the Cassie model and the Wenzel model. When a water drop is at the Wenzel state, its contact angle hysteresis increases along with an increase in the surface roughness. While the surface roughness is further raised beyond its transition roughness (from the Wenzel state to the Cassie state), the contact angle hysteresis (or receding contact angle) discontinuously drops (or jumps) to a lower (or higher) value. When a water drop is at the Cassie state, its contact angle hysteresis strongly depends on the solid fraction and has nothing to do with the surface roughness. Even for a superhydrophobic surface, the contact angle hysteresis may still exhibit a value as high as 41 degrees for the solid fraction of 0.563.  相似文献   

13.
In this paper, we demonstrate how condensed moisture droplets wet classical superhydrophobic lotus leaf surfaces and analyze the mechanism that causes the increase of contact angle hysteresis. Superhydrophobic lotus leaves in nature show amazing self-cleaning property with high water contact angle (>150°) and low contact angle hysteresis (usually <10°), causing droplets to roll off at low inclination angles, in accordance with classical Cassie–Baxter wetting state. However, when superhydrophobic lotus leaves are wetted with condensation, the condensed water droplets are sticky and exhibit higher contact angle hysteresis (40–50°). Compared with a fully wetted sessile droplet (classical Wenzel state) on the lotus leaves, the condensed water droplet still has relatively large contact angle (>145°), suggesting that the wetting state deviates from a fully wetted Wenzel state. When the condensed water droplets are subjected to evaporation at room conditions, a thin water film is observed bridging over the micropillar structures of the lotus leaves. This causes the dew to stick to the surface. This result suggests that the condensed moisture does not uniformly wet the superhydrophobic lotus leaf surfaces. Instead, there occurs a mixed wetting state, between classical Cassie–Baxter and Wenzel states that causes a distinct increase of contact angle hysteresis. It is also observed that the mixed Cassie–Baxter/Wenzel state can be restored to the original Cassie–Baxter state by applying ultrasonic vibration which supplies energy to overcome the energy barrier for the wetting transition. In contrast, when the surface is fully wetted (classical Wenzel state), such restoration is not observed with ultrasonic vibration. The results reveal that although the superhydrophobic lotus leaves are susceptible to being wetted by condensing moisture, the configured wetting state is intermediate between the classical Cassie–Baxter and Wenzel states.  相似文献   

14.
Nonadhesive and water-repellent surfaces are required for many tribological applications. We study mechanisms of wetting of patterned superhydrophobic Si surfaces, including the transition between various wetting regimes during microdroplet evaporation in environmental scanning electron microscopy (ESEM) and for contact angle and contact angle hysteresis measurements. Wetting involves interactions at different scale levels: macroscale (water droplet size), microscale (surface texture size), and nanoscale (molecular size). We propose a generalized formulation of the Wenzel and Cassie equations that is consistent with the broad range of experimental data. We show that the contact angle hysteresis involves two different mechanisms and how the transition from the metastable partially wetted (Cassie) state to the homogeneously wetted (Wenzel) state depends upon droplet size and surface pattern parameters.  相似文献   

15.
Superhydrophobicity is obtained on photolithographically structured silicon surfaces consisting of flat-top pillars after a perfluorosilanization treatment. Systematic static contact angle measurements were carried out on these surfaces as a function of pillar parameters that geometrically determine the surface roughness, including pillar height, diameter, top perimeter, overall filling factor, and disposition. In line with thermodynamics models, two regimes of static contact angles are observed varying each parameter independently: the "Cassie" regime, in which the water drop sits suspended on top of the pillars (referred to as composite), corresponding to experimental contact angles greater than 140-150 degrees, and the "Wenzel" regime, in which water completely wets the asperities (referred to as wetted), corresponding to lower experimental contact angles. A transition between the Cassie and Wenzel regimes corresponds to a set of well-defined parameters. By smoothly depositing water drops on the surfaces, this transition is observed for surface parameter values far from the calculated ones for the thermodynamic transition, therefore offering evidence for the existence of metastable composite states. For all studied parameters, the position of the experimental transition correlates well with a rough estimation of the energy barrier to be overcome from a composite metastable state in order to reach the thermodynamically favored Wenzel state. This energy barrier is estimated as the surface energy variation between the Cassie state and the hypothetical composite state with complete filling of the surface asperities by water, keeping the contact angle constant.  相似文献   

16.
Electrowetting (EW) has recently been demonstrated as a powerful tool for controlling droplet morphology on smooth and artificially structured surfaces. The present work involves a systematic experimental investigation of the influence of electrowetting in determining and altering the state of a static droplet resting on an artificially microstructured surface. Extensive experimentation is carried out to benchmark a previously developed energy-minimization-based model that analyzed the influence of interfacial energies, surface roughness parameters, and electric fields in determining the apparent contact angle of a droplet in the Cassie and Wenzel states under the influence of an EW voltage. The EW voltage required to trigger a transition from the Cassie state to the Wenzel state is experimentally determined for surfaces having a wide range of surface parameters (surface roughness and fraction of surface area covered with pillars). The reversibility of the Cassie-Wenzel transition upon the removal of the EW voltage is also quantified and analyzed. The experimental results from the present work form the basis for the design of surfaces that enable dynamic control of droplet morphology. A significant finding from the present work is that nonconservative dissipative forces have a significant influence in opposing fluid flow inside the microstructured surface that inhibits reversibility of the Cassie-Wenzel transition. The artificially structured surfaces considered in this work have microscale roughness feature sizes that permits direct visual observation of EW-induced Cassie-Wenzel droplet transition; this is the first reported visual confirmation of EW-induced droplet state transition.  相似文献   

17.
Electrowetting (EW) is a powerful tool to control fluid motion at the microscale and has promising applications in the field of microfluidics. The present work analyzes the influence of an electrowetting voltage in determining and altering the state of a static droplet resting on a rough surface. An energy-minimization-based modeling approach is used to analyze the influence of interfacial energies, surface roughness parameters, and electric fields in determining the apparent contact angle of a droplet in the Cassie and Wenzel states under the influence of an EW voltage. The energy-minimization-based approach is also used to analyze the Cassie-Wenzel transition under the influence of an EW voltage and estimate the energy barrier to transition. The results obtained show that EW is a powerful tool to alter the relative stabilities of the Cassie and Wenzel states and enable dynamic control of droplet morphology on rough surfaces. The versatility and generalized nature of the present modeling approach is highlighted by application to the prediction of the contact angle of a droplet on an electrowetted rough surface consisting of a dielectric layer of nonuniform thickness.  相似文献   

18.
以砂纸为模板制作聚合物超疏水表面   总被引:5,自引:2,他引:5  
报道了一种聚合物材料超疏水表面的简便制备方法. 以不同型号的金相砂纸为模板, 通过浇注成型或热压成型技术, 在聚合物表面形成不同粗糙度的结构. 接触角实验结果证明, 聚合物表面与水的接触角随着所用砂纸模板粗糙度的增加而加大, 其中粒度号为W7和W5砂纸制作的表面与水的接触角可超过150°, 显示出超疏水性质. 多种聚合物使用砂纸为模均可制备不同粗糙度及超疏水的表面, 本征接触角对复制表面浸润性的影响从Wenzel态到Cassie态而变小. 扫描电镜结果表明, 不规则形状的砂纸磨料颗粒构成了超疏水所需要的微纳米结构的模板.  相似文献   

19.
This paper reports a systematic study on the relationship between surface structure and wetting state of ordered nanoporous alumina surface. The wettability of the porous alumina is dramatically changed from hydrophilicity to hydrophobicity by increasing the hole diameter, while maintaining the hole interval and depth. This phenomenon is attributed to the gradual transition between Wenzel and Cassie states which was proved experimentally by comparing the wetting behavior on these porous alumina surfaces. Furthermore, the relationship between surface wettability and hole depth at a fixed hole interval and diameter was investigated. For those porous alumina with relatively larger holes in diameter, transition between Wenzel and Cassie states was also achieved with increasing hole depth. A capillary-pressure balance model was proposed to elucidate the unique structure-induced transition, and the criteria for the design and construction of a Cassie wetting surface was discussed. These structure-induced transitions between Wenzel and Cassie states could provide further insight into the wetting mechanism of roughness-induced wettability and practical guides for the design of variable surfaces with controllable wettability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号