首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we demonstrate how condensed moisture droplets wet classical superhydrophobic lotus leaf surfaces and analyze the mechanism that causes the increase of contact angle hysteresis. Superhydrophobic lotus leaves in nature show amazing self-cleaning property with high water contact angle (>150°) and low contact angle hysteresis (usually <10°), causing droplets to roll off at low inclination angles, in accordance with classical Cassie–Baxter wetting state. However, when superhydrophobic lotus leaves are wetted with condensation, the condensed water droplets are sticky and exhibit higher contact angle hysteresis (40–50°). Compared with a fully wetted sessile droplet (classical Wenzel state) on the lotus leaves, the condensed water droplet still has relatively large contact angle (>145°), suggesting that the wetting state deviates from a fully wetted Wenzel state. When the condensed water droplets are subjected to evaporation at room conditions, a thin water film is observed bridging over the micropillar structures of the lotus leaves. This causes the dew to stick to the surface. This result suggests that the condensed moisture does not uniformly wet the superhydrophobic lotus leaf surfaces. Instead, there occurs a mixed wetting state, between classical Cassie–Baxter and Wenzel states that causes a distinct increase of contact angle hysteresis. It is also observed that the mixed Cassie–Baxter/Wenzel state can be restored to the original Cassie–Baxter state by applying ultrasonic vibration which supplies energy to overcome the energy barrier for the wetting transition. In contrast, when the surface is fully wetted (classical Wenzel state), such restoration is not observed with ultrasonic vibration. The results reveal that although the superhydrophobic lotus leaves are susceptible to being wetted by condensing moisture, the configured wetting state is intermediate between the classical Cassie–Baxter and Wenzel states.  相似文献   

2.
The stability of wetting states, namely the Cassie state (partial wetting) and the Wenzel state (complete wetting) of surfaces with protrusions, is determined by comparing the total free energy of a liquid drop in terms of their apparent contact angles for different protrusion features. It is found that when the area fraction of the topographical features and the intrinsic contact angle for a flat surface are large, the Cassie state is favored, but it can be either the metastable or stable state. It is shown that the transition from the Cassie state to the Wenzel state requires the application of a pressure to the meniscus between the surface protrusions. The critical transition pressure increases not only with increasing area fraction and intrinsic contact angle, but also with decreasing protrusion size. During the transition, a high-pressure gas can be trapped around the protrusions that can cause the Cassie state to be recovered after the release of the applied pressure. The analysis shows that a droplet can 'hang' upside-down when the protrusion size is very small; namely, the protrusions can pin the meniscus. These results are discussed relative to the advancing and receding contact angle.  相似文献   

3.
We demonstrate that wettability of poly(ethylene glycol) (PEG) surfaces can be controlled using nanostructures with various geometrical features. Capillary lithography was used to fabricate PEG nanostructures using a new ultraviolet (UV) curable mold consisting of functionalized polyurethane with acrylate group (MINS101m, Minuta Tech.). Two distinct wetting states were observed depending of the height of nanostructures. At relatively lower heights (< 300 nm for 150 nm pillars with 500 nm spacing), the initial contact angle of water was less than 80 degrees and the water droplet easily invaded into the surface grooves, leading to a reduced contact angle at equilibrium (Wenzel state). At relatively higher heights (> 400 nm for 150 nm pillars with 500 nm spacing), on the other hand, the nanostructured PEG surface showed hydrophobic nature and no significant change in contact angle was observed with time (Cassie state). The presence of two wetting states was also confirmed by dynamic wetting properties and contact-angle hysteresis. The wetting transition from hydrophilic (bare PEG surface) to hydrophobic (PEG nanostructures) was described by the Cassie-Baxter equation assuming that enhanced hydrophobicity is due to the heterogeneous wetting mediated by an air pocket on the surface. The measured contact angles in the Cassie state were increased with increasing air fraction, in agreement with the theoretical prediction.  相似文献   

4.
A series of pillar-like patterned silicon wafers with different pillar sizes and spacing are fabricated by photolithography and further modified by a self-assembled fluorosilanated monolayer. The dynamic contact angles of water on these surfaces are carefully measured and found to be consistent with the theoretical predictions of the Cassie model and the Wenzel model. When a water drop is at the Wenzel state, its contact angle hysteresis increases along with an increase in the surface roughness. While the surface roughness is further raised beyond its transition roughness (from the Wenzel state to the Cassie state), the contact angle hysteresis (or receding contact angle) discontinuously drops (or jumps) to a lower (or higher) value. When a water drop is at the Cassie state, its contact angle hysteresis strongly depends on the solid fraction and has nothing to do with the surface roughness. Even for a superhydrophobic surface, the contact angle hysteresis may still exhibit a value as high as 41 degrees for the solid fraction of 0.563.  相似文献   

5.
Molecular dynamics simulations were used to study the wetting of nanogrooved PE and PVC polymer surfaces. The contact angles, equilibrium states, and equilibrium shapes of two nanosized water droplets were analyzed on surfaces with 1D-arranged periodic roughness of various dimensions. The composite solid-liquid contact, which is preferred in practical applications and in which a droplet rests on top of the surface asperities, was observed on the roughest PE surfaces, whereas water filled the similar but slightly deeper grooves on PVC surfaces. The transition from the wetted to composite contact regime occurred when the contact angle with a flat surface reached the value at which the apparent Wenzel and Cassie contact angles are equal. Droplets on grooved PE surfaces with the composite contact exhibited contact angles in agreement with Cassie's equation, but the increase in hydrophobicity on smoother surfaces with the wetted contact was less than expected from Wenzel's equation. The difference between the simulated and theoretical values decreased as the dimensions of the surface grooves increased. Only a slight increase or even a slight decrease in the contact angles was observed on the grooved PVC surfaces, owing to the less hydrophobic nature of the flat PVC surface. On both polymers, the nanodroplet assumed a spherical shape in the composite contact. Only minor anisotropy was observed in the wetted contact on PE surfaces, whereas even a highly anisotropic shape was seen on the grooved PVC surfaces. The contact angle in the direction of the grooves was smaller than that in the perpendicular direction, and the difference between the two angles decreased with the increasing size of the water droplet.  相似文献   

6.
How to make the Cassie wetting state stable?   总被引:1,自引:0,他引:1  
Wetting of rough hydrophilic and hydrophobic surfaces is discussed. The stability of the Cassie state, with air trapped in relief details under the droplet, is necessary for the design of true superhydrophobic surfaces. The potential barrier separating the Cassie state and the Wenzel state, for which the substrate is completely wetted, is calculated for both hydrophobic and hydrophilic surfaces. When the surface is hydrophobic, the multiscaled roughness of pillars constituting the surface increases the potential barrier separating the Cassie and Wenzel states. When water fills the hydrophilic pore, the energy gain due to the wetting of the pore hydrophilic wall is overcompensated by the energy increase because of the growth of the high-energetic liquid-air interface. The potential barrier separating the Cassie and Wenzel states is calculated for various topographies of surfaces. Structural features of reliefs favoring enhanced hydrophobicity are elucidated.  相似文献   

7.
Electrowetting (EW) has recently been demonstrated as a powerful tool for controlling droplet morphology on smooth and artificially structured surfaces. The present work involves a systematic experimental investigation of the influence of electrowetting in determining and altering the state of a static droplet resting on an artificially microstructured surface. Extensive experimentation is carried out to benchmark a previously developed energy-minimization-based model that analyzed the influence of interfacial energies, surface roughness parameters, and electric fields in determining the apparent contact angle of a droplet in the Cassie and Wenzel states under the influence of an EW voltage. The EW voltage required to trigger a transition from the Cassie state to the Wenzel state is experimentally determined for surfaces having a wide range of surface parameters (surface roughness and fraction of surface area covered with pillars). The reversibility of the Cassie-Wenzel transition upon the removal of the EW voltage is also quantified and analyzed. The experimental results from the present work form the basis for the design of surfaces that enable dynamic control of droplet morphology. A significant finding from the present work is that nonconservative dissipative forces have a significant influence in opposing fluid flow inside the microstructured surface that inhibits reversibility of the Cassie-Wenzel transition. The artificially structured surfaces considered in this work have microscale roughness feature sizes that permits direct visual observation of EW-induced Cassie-Wenzel droplet transition; this is the first reported visual confirmation of EW-induced droplet state transition.  相似文献   

8.
Superhydrophobicity is obtained on photolithographically structured silicon surfaces consisting of flat-top pillars after a perfluorosilanization treatment. Systematic static contact angle measurements were carried out on these surfaces as a function of pillar parameters that geometrically determine the surface roughness, including pillar height, diameter, top perimeter, overall filling factor, and disposition. In line with thermodynamics models, two regimes of static contact angles are observed varying each parameter independently: the "Cassie" regime, in which the water drop sits suspended on top of the pillars (referred to as composite), corresponding to experimental contact angles greater than 140-150 degrees, and the "Wenzel" regime, in which water completely wets the asperities (referred to as wetted), corresponding to lower experimental contact angles. A transition between the Cassie and Wenzel regimes corresponds to a set of well-defined parameters. By smoothly depositing water drops on the surfaces, this transition is observed for surface parameter values far from the calculated ones for the thermodynamic transition, therefore offering evidence for the existence of metastable composite states. For all studied parameters, the position of the experimental transition correlates well with a rough estimation of the energy barrier to be overcome from a composite metastable state in order to reach the thermodynamically favored Wenzel state. This energy barrier is estimated as the surface energy variation between the Cassie state and the hypothetical composite state with complete filling of the surface asperities by water, keeping the contact angle constant.  相似文献   

9.
The fabrication of a superhydrophobic surface is demonstrated via a wet chemical route, and this method offers advantages of being cleanroom free, cost efficiency, and wide applicability. The preferable growth of ZnO crystalline forms a microstructured surface, and a variety of alkanoic acids were adopted to tune the surface wettability. Although all surfaces show an advancing contact angle greater than 150 degrees , they substantially differ in the wetting mechanisms. It is found that only when the length of alkanoic acid is greater than 16, the microstructured surface shows a stable superhydrophobicity, in which the Cassie state dominates. While for those moderate-length alkanoic acids (C8-C14), their corresponding surfaces have a tendency to fall into the Wenzel state and display a great contact angle hysteresis.  相似文献   

10.
On rough surfaces, two distinct wetting modes can appear. These two states are usually described by the theories of Cassie (drops suspended on top of roughness features) and Wenzel (drops impaled on roughness features). Whereas the wetting transition from the Cassie to the Wenzel state has been relatively well studied both experimentally and theoretically, the question of whether metastable Wenzel drops exist and how they transition to the Cassie state has remained open. In this work, we study the wetting behavior of microstructured post surfaces coated with a hydrophobic fluoropolymer. Through condensation, the formation of metastable Wenzel droplets is induced. We show that under certain conditions drops can transition from the Wenzel to the Cassie state.  相似文献   

11.
Molecular dynamics simulations were used to study the effect of periodic roughness of PE and PVC polymer surfaces on the hydrophobicity. Pillars of different lateral dimensions and heights were derived from flat crystalline surfaces, and the results of nanoscale simulations on the structured surfaces were compared with theoretical predictions of the Wenzel and Cassie equations. Hydrophobicity increased on all rough surfaces, but the increase was greater on the structured PE surfaces because of the larger water contact angle on the flat PE surface than the corresponding PVC surface. Equally sized pillar structures on the two polymers resulted in different equilibrium wetting geometries. Composite contacts were observed on rough PE surfaces, and the contact angle increased with decreasing contact area between the solid and the liquid. Opposite results were obtained for rough PVC surfaces; the contact angle increased with the solid-liquid contact area, in agreement with Wenzel's equation. However, the composite contact was observed if the energies of the wetted and composite contacts were almost equal. Good agreement was obtained between the simulated contact angles and equilibrium droplet shapes and the theories but there were also some limitations of the nanoscale simulations.  相似文献   

12.
Electrowetting (EW) is a powerful tool to control fluid motion at the microscale and has promising applications in the field of microfluidics. The present work analyzes the influence of an electrowetting voltage in determining and altering the state of a static droplet resting on a rough surface. An energy-minimization-based modeling approach is used to analyze the influence of interfacial energies, surface roughness parameters, and electric fields in determining the apparent contact angle of a droplet in the Cassie and Wenzel states under the influence of an EW voltage. The energy-minimization-based approach is also used to analyze the Cassie-Wenzel transition under the influence of an EW voltage and estimate the energy barrier to transition. The results obtained show that EW is a powerful tool to alter the relative stabilities of the Cassie and Wenzel states and enable dynamic control of droplet morphology on rough surfaces. The versatility and generalized nature of the present modeling approach is highlighted by application to the prediction of the contact angle of a droplet on an electrowetted rough surface consisting of a dielectric layer of nonuniform thickness.  相似文献   

13.
Micro- and nanoscale combined hierarchical polymer structures were fabricated by UV-assisted capillary force lithography. The method is based on the sequential application of engraved polymer molds with a UV-curable resin of polyurethane acrylate (PUA) followed by surface treatment with a trichloro(1H,1H,2H,2H-perfluorooctyl) silane in vapor phase. Two distinct wetting states were observed on these dual-roughness structures. One is “Cassie–Wenzel state” where a water droplet forms heterogeneous contact with microstructures and homogeneous contact with nanostructures. The other is “Cassie–Cassie state” where a droplet makes heterogeneous contact both with micro- and nanostructures. A simple thermodynamic model was developed to explain static contact angle, hysteresis, and wetting transition on dual-roughness structures.  相似文献   

14.
The classical Wenzel and Cassie models fail to give a physical explanation of such phenomenon as the macroscopic contact angle actually being equal to the Young's contact angle if there is a spot (surface defect) inside the droplet. Here, we derive the expression of the macroscopic contact angle for this special substrate in use of the principle of least potential energy, and our analytical results are in good agreement with the experimental data. Our findings also suggest that it is the triple contact line (TCL) rather than the contact area that dominates the contact angle. Therefore a new model based upon the TCL pinning is developed to explain the different wetting properties of the Wenzel and Cassie models for hydrophilic and hydrophobic cases. Moreover, the new model predicts the macroscopic contact angle in a broader range accurately, which is consistent with the existing experimental findings. This study revisits the fundamentals of wetting on rough substrates. The new model derived will help to design better superhydrophobic materials and provide the prediction required to engineer novel microfluidic devices.  相似文献   

15.
16.
采用液滴形状分析仪, 在线跟踪了液滴在图案化基底上的挥发过程. 结果表明, 与平滑基底结果相比, 图案化基底上的挥发过程明显不同. 首先, 接触角减小; 另外, 由于发生了Cassie态到Wenzel态转变, 所得接触直径在减小过程中产生了一个突然变大的阶段. 在该挥发过程中, 突起部分的面积分数扮演了十分重要的角色.  相似文献   

17.
This paper reports a systematic study on the relationship between surface structure and wetting state of ordered nanoporous alumina surface. The wettability of the porous alumina is dramatically changed from hydrophilicity to hydrophobicity by increasing the hole diameter, while maintaining the hole interval and depth. This phenomenon is attributed to the gradual transition between Wenzel and Cassie states which was proved experimentally by comparing the wetting behavior on these porous alumina surfaces. Furthermore, the relationship between surface wettability and hole depth at a fixed hole interval and diameter was investigated. For those porous alumina with relatively larger holes in diameter, transition between Wenzel and Cassie states was also achieved with increasing hole depth. A capillary-pressure balance model was proposed to elucidate the unique structure-induced transition, and the criteria for the design and construction of a Cassie wetting surface was discussed. These structure-induced transitions between Wenzel and Cassie states could provide further insight into the wetting mechanism of roughness-induced wettability and practical guides for the design of variable surfaces with controllable wettability.  相似文献   

18.
Despite the practical need, no models exist to predict contact angles or wetting mode of surfactant solutions on rough hydrophobic or superhydrophobic surfaces. Using Gibbs' adsorption equation and a literature isotherm, a new model is constructed based on the Wenzel and Cassie equations. Experimental data for aqueous solutions of sodium dodecyl sulfate (SDS) contact angles on smooth Teflon surfaces are fit to estimate values for the adsorption coefficients in the model. Using these coefficients, model predictions for contact angles as a function of topological f (Cassie) and r (Wenzel) factors and SDS concentration are made for different intrinsic contact angles. The model is also used to design/tune surface responses. It is found that: (1) predictions compare favorably to data for SDS solutions on five superhydrophobic surfaces. Further, the model predictions can determine which wetting mode (Wenzel or Cassie) occurred in each experiment. The unpenetrated or partially penetrated Cassie mode was the most common, suggesting that surfactants inhibit the penetration of liquids into rough hydrophobic surfaces. (2) The Wenzel roughness factor, r, amplifies the effect of surfactant adsorption, leading to larger changes in contact angles and promoting total wetting. (3) The Cassie solid area fraction, f, attenuates the lowering of contact angles on rough surfaces. (4) The amplification/attenuation is understood to be due to increased/decreased solid-liquid contact-area.  相似文献   

19.
It is considered that, after a water drop contacts the base of a roughness groove, water should immediately fill this roughness groove. Subsequently, Cassie-Baxter wetting state is transited to that of Wenzel. Accordingly, one of the criteria used to judge the transition from Cassie-Baxter to Wenzel states is whether a water drop has contact with the base of a roughness groove. In this work, through theoretical and experimental investigations, we show that this transition criterion does not always hold true in the case of microchannels. We first theoretically prove that, when an angle criterion is satisfied, there may exist an intermediate wetting state inside a microchannel after a water drop contacts the bottom of the microchannel. In this wetting state, water does not completely fill the microchannel, and air pockets still exist in its bottom corners. Also, the wetting state is stable in the sense that its energy state is lower than that of the Wenzel model. According to the angle criterion, such intermediate states may exist, for example, in microchannels with vertical sidewalls, when contact angles on the inner surfaces of these microchannels are larger than 135°. In addition to microchannels, the aforementioned intermediate state may also exist on a single corner (which is formed by a horizontal plate and an inclined plate), when the angle criterion is met. After theoretical modeling, we then conduct four types of tests on single corners and microchannels to validate the angle criterion. In these tests, once the angle criterion is met, stable intermediate states are observed on the corresponding samples. In addition, it is found from the two types of tests conducted on microchannels that, once Laplace pressure inside a water drop is gradually reduced, such an intermediate wetting state may be transited back to the original Cassie-Baxter state. On the other hand, the Wenzel state may not have such a reversal transition unless an additional force is applied to overcome energy barrier between Wenzel and Cassie-Baxter states.  相似文献   

20.
This paper provides a review of superhydrophobicity and related phenomena (superoleophobicity, omniphobicity, self-cleaning) induced by surface micro- and nanostructuring. The classical approaches to superhydrophobicity using the Young, Wenzel, and Cassie–Baxter models for the contact angle (CA) are presented. After that, the issues that are beyond the Wenzel and Cassie–Baxter theories are discussed, such as multiscale effects, 1D vs. 2D interactions, the effects of contact line, size of roughness details, curvature, and CA hysteresis dependence on roughness. New potential applications of superhydrophobicity are reviewed, such as new ways of energy transition, antifouling, and environment-friendly manufacturing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号