首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
通过193nm光解丁烯酮分子产生乙烯基自由基(·C2H3).经射流冷却后,以另一束可调谐激光光解·C2H3,生成的氢原子碎片经共振增强多光子电离(REMPI)过程,记录氢离子信号随光解波长变化,得到21180 ̄21320cm-1范围内乙烯基A!2A″(!′5,6,8=1)←X!2A′(!″=0)跃迁的振转光谱.结合量化计算和光谱拟合,对该段光谱进行了细致的振转分析,确定了各振动谱带位置,识别了其中主要的转动跃迁.由光谱拟合得到各振动能级的预解离寿命,讨论了其与振动模式及激发转动量子数的依赖关系,证实了理论预测的乙烯基A!2A″电子态的面内解离机制.  相似文献   

2.
在230nm激光激发下,氧硫化碳(OCS)分子迅速解离生成振动基态但高转动激发的CO(X~1∑_g~+,v=0,J=42-69)碎片,并通过共振增强多光子电离技术实现其离子化。通过检测处于J=56-69转动激发态CO碎片的离子速度聚焦影像,我们获得了各转动态CO碎片的速度分布和空间角度分布,其中包含了S(1D)+CO的单重态和S(~3P_J)+CO三重态解离通道的贡献。不同的转动态CO碎片对应三重态产物通道的量子产率略有不同,经加权平均我们得到230 nm附近光解OCS分子中S(3P)解离通道的量子产率为4.16%。结合高精度量化计算的OCS分子势能面和吸收截面的信息,我们获得了OCS光解的三重态解离机理,即基态OCS(X~1A')分子吸收一个光子激发到弯曲的A~1A'态之后,通过内转换跃迁回弯曲构型的基电子态,随后在C-S键断裂过程中与2~3A"(c~3A")态强烈耦合并沿后者势能面绝热解离。  相似文献   

3.
NH_3Ã(~1Ã″_2)是个快速预解离态,寿命约10~(-13)s。本文研究了以这个态为中间共振态的2+1+1双色双共振多光子电离过程。我们首先获得了NH_2和ND_3两分子X→Ã→C′NH_3~+(或ND_3~+)+e跃迁的多光子电离光增, 求出了ND_3C′v_2=0, 1两能级的转动常数,然后通过合理的实验设计, 得到了NH_3分子X→Ã跃迁转动线的增益线型。  相似文献   

4.
通过193 nm光解丁烯酮分子产生乙烯基自由基(•C2H3). 经射流冷却后, 以另一束可调谐激光光解•C2H3, 生成的氢原子碎片经共振增强多光子电离(REMPI)过程, 记录氢离子信号随光解波长变化, 得到21180~21320 cm-1范围内乙烯基 A2A″(µ′5,6,8=1)←X2A′(µ″=0)跃迁的振转光谱. 结合量化计算和光谱拟合, 对该段光谱进行了细致的振转分析, 确定了各振动谱带位置, 识别了其中主要的转动跃迁. 由光谱拟合得到各振动能级的预解离寿命, 讨论了其与振动模式及激发转动量子数的依赖关系, 证实了理论预测的乙烯基A2A″电子态的面内解离机制.  相似文献   

5.
丁酮分子的共振增强多光子电离解离研究   总被引:1,自引:0,他引:1  
利用可调谐染料激光研究了丁酮分子的共振增强多光子电离解离过程,发现在428~448nm激光波段丁酮分子发生的是经4p和4dRydberg态的(3+1)多光子过程。此外,我们还用“梯开关”模型对丁酮母体离子的解离机理和各碎片来源作了详细的分析,分析认为在丁酮母体离子的解离过程中存在H原子重排与电荷的重新分布现象。  相似文献   

6.
丁酮分子的共振增强多光子电离解离研究   总被引:3,自引:0,他引:3  
利用可调谐染料激光研究了丁酮分子的共振增强多光子电离解离过程,发现在428~448nm激光波段丁酮分子发生的是经4p和4dRydberg态的(3+1)多光子过程。此外,我们还用“梯开关”模型对丁酮母体离子的解离机理和各碎片来源作了详细的分析,分析认为在丁酮母体离子的解离过程中存在H原子重排与电荷的重新分布现象。  相似文献   

7.
结合共振增强多光子电离(REMPI)方案,利用离子影像技术研究了n-C3H7I和i-C3H7I分子的光解动力学.分析和比较了它们光解过程中所涉及的能量分配和解离态间的非绝热跃迁信息.它们的I(2P3/2)产物通道的内能所占百分比要大于I*(2P1/2)产物通道的.随着烷烃自由基变得更加的分支化,一方面,原子碎片(I和I*)的能量分布明显变宽,暗示了α-碳原子上的烷基具有更复杂的振转模式;另一方面,在266nm光子的泵浦下,尽管两分子3Q0邝X跃迁的谐振强度表现出很小的差别,但是,产生I*碎片的几率明显降低,从n-C3H7I的0.72降到i-C3H7I的0.46.这可以归因于在光解i-C3H7I过程中弯曲振动模式对产生I和I*的贡献要比n-C3H7I光解过程中弯曲振动模式对I和I*的贡献更明显,使得3Q0与1Q1态之间的非绝热跃迁得到增强.此外,n-C3H7I和i-C3H7I的3Q0邝X跃迁并不完全是平行跃迁,对应的跃迁偶极矩与键轴间的夹角分别约为15°和18°.  相似文献   

8.
分子在强红外激光照射下可以吸收几十个红外光子而解离,目前人们已经对这一现象进行了广泛的研研。其中研究较多的分子有SF_6、CF_3I、CF_2HCl等。由于CF_2HCl分子在红外激光照射时解离过程比较简单,而且也是一个激光分离碳-13同位素有前途的工作介质,人们对CF_2HCl分子的红外多光子解离规律做了较深入的研究。Y.T.Lee等利用分子束的方法研研了CF_2HCl分子在红外多光子解离时的机制。J.C.Stephenson等以及R.D.Duperrex等测定了CF_2HCl分子在无碰撞条件下的瞬时解离规律,认为CF_2HCl分子具有明显的转  相似文献   

9.
采用二次量子化方法和酉变换讨论了O3分子在激光场中的多光子激发.推导出了O3分子的振动Hamiltonian 算子、从基态到各激发态的跃迁几率公式,以及O3分子从激光场中吸收的光子数公式,并分析了计算结果.这包括对O3分子伸缩振动能谱的计算及与实验结果的比较,跃迁几率随外场频率的变化、随时间的变化,以及O3分子在辐射场中的能量吸收情况(取光场强度为5×10-2 W/cm2).建立讨论所有具有C2v对称分子从基态到第四激发态以下各态多光子激发问题的模型.  相似文献   

10.
不同电荷态泛素蛋白离子的193 nm紫外光解离质谱   总被引:1,自引:0,他引:1  
将193 nm激光与傅里叶变换离子回旋共振(FT-ICR)质谱仪结合, 研究了不同价态的泛素蛋白离子的紫外光解离质谱. 结果表明, 在光解离过程中向分析池内引入适量的碰撞气, 不仅能增加母体离子的裂解率, 也能提高碎片离子的捕获效率. 相对于碰撞辅助解离(CAD)中产生的b和y离子, 紫外光解离(UVPD)方法能够产生更为丰富的不同种类碎片离子. 其中, 对于+11价泛素离子, 蛋白质序列的覆盖率接近80%, 远高于对应的CAD实验结果. 与已往报道不同的是, 裂解覆盖率呈现出较强的电荷相关性. 因此, 如何进一步提高较低电荷态的蛋白离子的解离效率和序列覆盖率还需深入研究.  相似文献   

11.
We formulate two-color nonlinear wave-packet interferometry (WPI) for application to a diatomic molecule in the gas phase and show that this form of heterodyne-detected multidimensional electronic spectroscopy will permit the reconstruction of photoinduced rovibrational wave packets from experimental data. Using two phase-locked pulse pairs, each resonant with a different electronic transition, nonlinear WPI detects the quadrilinear interference contributions to the population of an excited electronic state. Combining measurements taken with different phase-locking angles isolates various quadrilinear interference terms. One such term gives the complex overlap between a propagated one-pulse target wave packet and a variable three-pulse reference wave packet. The two-dimensional interferogram in the time domain specifies the complex-valued overlap of the given target state with a collection of variable reference states. An inversion procedure based on singular-value decomposition enables reconstruction of the target wave packet from the interferogram without prior detailed characterization of the nuclear Hamiltonian under which the target propagates. With numerically calculated nonlinear WPI signals subject to Gaussian noise, we demonstrate the reconstruction of a rovibrational wave packet launched from the A state and propagated in the E state of Li2.  相似文献   

12.
We have theoretically investigated the population transfer from the initial ground rovibrational level v(g)=0, J(g)=0 to the final rovibrational levels v(f)=1,2, J(f)=0 of the ground electronic state X (1)Sigma(g) (+) via the resonant intermediate level v(i)=6, J(i)=0 of the excited electronic state EF (1)Sigma(g) (+) of H(2) molecule by (2+2)-photon stimulated hyper-Raman passage (STIHRP). The density matrix technique has been employed to evaluate the population transfer to the final target levels using linearly chirped pump and Stokes laser pulses with different chirp rates. Both the pulses are considered to have the same temporal shape, pulse width, and linear parallel polarizations. We have studied in detail the dependence of the population transfer on the set of laser parameters for pulse (peak) intensities in the ranges of 1.5 x 10(11)-1.0 x 10(12) and 1.0 x 10(12)-7.0 x 10(12) W/cm(2). The corresponding pulse widths (full width at half maximum) are of the order of 115-200 and 15-30 ps. We have found that the chirp rate parameters can be optimized to achieve almost complete population transfer from the ground (g) to the final (f) target levels. This, to our knowledge, is the first application of a (2+2)-photon STIHRP process with chirpings to a model molecular system (H(2)). The study demonstrates the suitability of the chirped (2+2)-photon STIHRP technique for selective and almost total inversion of vibrational population in a diatomic molecule.  相似文献   

13.
Selective population transfer in electronic states of dissociative molecular systems is illustrated by adopting a control scheme based on Stark-chirped rapid adiabatic passage (SCRAP). In contrast to the discrete N-level system, dynamical Stark shift is induced in a more complex manner in the molecular electronic states. Wavepacket dynamics on the light-induced potentials, which are determined by the detuning of the pump pulse, can be controlled by additional Stark pulse in the SCRAP scheme. Complete population transfer can be achieved by either lowering the energy barrier along the adiabatic passage or placing the initial wavepacket on a well-defined dressed state suitable for the control. The determination of the pulse sequence is sufficient for controlling population transfer to the target state.  相似文献   

14.
The quantum dynamics of a photoassociation reaction in the electronic ground state controlled by an infrared picosecond laser pulse is investigated. The association reaction O + H → OH(ν) is simulated by representative wavepackets. The OH molecule to be formed is modeled as a non-rotating Morse oscillator. It is shown that the initial free continuum state of O + H can be transferred selectively into a specified vibrational bound state by interaction with an infrared laser pulse. Optimal design of the laser control field leads to high association probability with very high vibrational state selectivity.  相似文献   

15.
High-resolution IR-UV multiple resonance methods are employed to elucidate the photodissociation dynamics of quantum state-selected Ar-HOD and Ar-H(2)O van der Waals clusters. A single mode pulsed OPO operating in the region of the OH second overtone is used to prepare individual rovibrational states that are selectively photodissociated at specific excimer wavelengths. Subsequent fluorescence excitation of the resulting OH (OD) fragments yields dynamical information on the photofragmentation event and any resulting intracluster collisions. This technique is used to characterize spectroscopically the Pi(1(01)), nu(OH)=3<--Sigma(0(00)), v(OH)=0 overtone band of the Ar-HOD complex with an origin at 10648.27 cm(-1). The effects of Ar complexation on the dissociation dynamics are inferred by comparison of the OD photofragment quantum state distributions resulting from dissociation of single rovibrational states of the complex with those from isolated HOD photodissociation. The important role played by the initial internal state of the complex is demonstrated by comparison of the current Ar-HOD data with previously published results for the Ar-H(2)O Sigma(0(00))[03(-)> state. We interpret the dramatic differences in the dynamics of the two systems as manifestations of the nodal structure of the vibrational state in the parent complex and the way in which it governs the collision probability between the Ar atom and the escaping photofragments.  相似文献   

16.
This paper describes an investigation into the process of adiabatic passage by light-induced potentials (APLIP), which was previously suggested as a method for employing two strong picosecond laser pulses to transfer the population between two electronic states. We have extended earlier numerical studies in order to assess the feasibility of an experimental implementation of the APLIP concept. APLIP has been modeled in a three-level model system based on Na2 with chirped pulses, using laser parameters available from a typical chirped pulse amplified Ti:sapphire laser. The model showed that the APLIP process remains essentially unchanged for chirped pulses of equal magnitude and the opposite, or equal and positive sign of chirp as compared to the transform-limited case. We also examined the case of additional electronic states by introduction of a fourth state that lies close to the "target," i.e., final, state. The investigation showed that there are circumstances in which a significant fraction of the population gets transferred to this state which will disrupt the APLIP process. However, by switching to this fourth state as the target state in an experiment, good transfer efficiency is recovered. The results of the extension of the original APLIP modeling to chirped pulses and additional electronic states indicate that an APLIP experimental realization should be feasible in Na2.  相似文献   

17.
The 4nu(CH) rovibrational manifold around 12 700 cm(-1) in the electronic ground state, X, of acetylene (C2H2) is monitored by time-resolved infrared-ultraviolet double-resonance (IR-UV DR) spectroscopy. An IR laser pulse initially prepares rotational J states, associated with the "IR-bright" (nu1 + 3nu3) or (1 0 3 0 0)0 vibrational combination level, and subsequent collision-induced state-to-state energy transfer is probed by UV laser-induced fluorescence. Anharmonic, l-resonance, and Coriolis couplings affect the J states of interest, resulting in a congested rovibrational manifold that exhibits complex intramolecular dynamics. In preceding papers in this series, we have described three complementary forms of the IR-UV DR experiment (IR-scanned, UV-scanned, and kinetic) on collision-induced rovibrational satellites, comprising both regular even-DeltaJ features and unexpected odd-DeltaJ features. This paper examines an unusual collision-induced quasi-continuous background (CIQCB) effect that is apparently ubiquitous, accompanying regular even-DeltaJ rovibrational energy transfer and accounting for much of the observed collision-induced odd-DeltaJ satellite structure; certain IR-bright (1 0 3 0 0)0 rovibrational states (e.g., J = 12) are particularly prominent in this regard. We examine the mechanism of this CIQCB phenomenon in terms of a congested IR-dark rovibrational manifold that is populated by collisional transfer from the nearly isoenergetic IR-bright (1 0 3 0 0)0 submanifold.  相似文献   

18.
Using the time-dependent quantum wave packet method, the photoassociation (PA) processes of He + H +→ HeH+ and He + D +→ HeD+, driven by the sin2-shaped femtosecond laser pulse in the electronic ground state, including multiphoton transitions and dissociations, are investigated for a wide range of initial collision momenta spanning from 1 to 4 a.u. (or for the collision energy roughly in the ranges of 0.009∼0.148 eV and 0.006∼0.089 eV for HeH+ and HeD+ systems, respectively). It is found that, at some collision momenta, multiphoton transitions to deeply bound states are inevitable to occur and can greatly decrease the PA probability of the target state that selected is the vibrational state v = 6. For the dissociation process, the higher-order (two- and three-photon) dissociations, measured from the target state, tend to be significant at relative high collision energies, which implies that above-threshold dissociations may also be an important loss mechanism in the PA process. In addition, it is also shown that the higher-order dissociation is much stronger for HeH+ systems than that for HeD+ systems at a given collision momentum, and could be enhanced by the strong transitions among deeply bound states.  相似文献   

19.
The implementations of quantum logic gates realized by the rovibrational states of a C(12)O(16) molecule in the X((1)Σ(+)) electronic ground state are investigated. Optimal laser fields are obtained by using the modified multitarget optimal theory (MTOCT) which combines the maxima of the cost functional and the fidelity for state and quantum process. The projection operator technique together with modified MTOCT is used to get optimal laser fields. If initial states of the quantum gate are pure states, states at target time approach well to ideal target states. However, if the initial states are mixed states, the target states do not approach well to ideal ones. The process fidelity is introduced to investigate the reliability of the quantum gate operation driven by the optimal laser field. We found that the quantum gates operate reliably whether the initial states are pure or mixed.  相似文献   

20.
Collision-induced state-to-state molecular energy transfer between rovibrational states in the 12,700 cm(-1) 4nu(CH) manifold of the electronic ground state X of acetylene (C(2)H(2)) is monitored by time-resolved infrared-ultraviolet double resonance (IR-UV DR) spectroscopy. Rotational J-states associated with the (nu(1) + 3nu(3)) or (1 0 3 0 0)(0) vibrational combination level, initially prepared by an IR pulse, are probed at approximately 299, approximately 296, or approximately 323 nm with UV laser-induced fluorescence via the Alpha electronic state. The rovibrational J-states of interest belong to a congested manifold that is affected by anharmonic, l-resonance, and Coriolis couplings, yielding complex intramolecular dynamics. Consequently, collision-induced rovibrational satellites observed by IR-UV DR comprise not only regular even-DeltaJ features but also supposedly forbidden odd-DeltaJ features. A preceding paper (J. Phys. Chem. A 2003, 107, 10759) focused on low-J-value rovibrational levels of the 4nu(CH) manifold (particularly those with J = 0 and J = 1) whereas this paper examines locally perturbed states at higher values of J (particularly J = 17 and 18, which display anomalous doublet structure in IR-absorption spectra). Three complementary forms of IR-UV DR experiments (IR-scanned, UV-scanned, and kinetic) are used to address the extent to which intramolecular perturbations influence the efficiency of J-resolved collision-induced energy transfer with both even and odd DeltaJ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号