首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
夏兰  余林颇  胡笛  陈政 《化学学报》2017,75(12):1183-1195
电解液作为锂离子电池的重要组成部分,起着传输离子的作用,电解液的性质对电池的容量、循环性能及安全性能等影响巨大.近年来,随着高电压、高能量密度锂离子电池的开发应用,现有常规碳酸酯电解液存在正极稳定性差、闪点低、易燃烧等问题.因此,发展高电压耐燃电解液是应用高电压高容量正极材料、发展高电压高容量高安全性锂离子电池的迫切需要.主要综述了高电压电解液、耐燃性电解液及兼具抗氧化性和耐燃性的高浓度电解液的研究进展和现状.在此基础上,对锂离子电池新型电解液的发展方向进行了展望.  相似文献   

2.
随着大型移动设备(如新能源汽车等)、储能电站及其他便携式充电设备的日益普及,锂离子电池正逐步占领化学电源市场的主导地位。电解液是锂离子电池的重要组成部分,对电池的许多性能如输出电压、能量密度、输出功率、寿命、温度适用范围和安全性能等具有重要的影响。氟具有很强的电负性和弱极性,氟代溶剂或含氟添加剂具有低熔点、高闪点和高氧化分解电压等优点。氟代溶剂与电极材料之间的润湿性也较好,在高电压电解液、高安全性电解液、宽温度窗口电解液以及其他特殊功能电解液的开发中具有深入的研究和广泛的应用。本文综述了近年来氟代溶剂或添加剂在锂离子电池电解液中的不同应用,分析阐述了其对电池性能提升的机理,总结了以氟代碳酸乙烯酯(FEC)为代表的氟代溶剂的合成方法,最后对用于锂离子电池电解液的氟代溶剂或含氟添加剂的研发方向和发展趋势进行了展望。  相似文献   

3.
开发高电压正极材料是发展高能量密度锂离子电池的重要途径之一。常规电解液在高电压下容易与正极材料表面发生副反应,影响高电压正极材料性能的发挥,因此,高电压电解液引起了人们广泛的关注。本文主要从新型溶剂体系和常规碳酸酯溶剂体系两方面对锂离子电池高电压电解液进行综述与评价,提出了现有电解液的不足及面临的问题。从电解液溶剂分子设计理论入手,分析了砜类溶剂、腈基溶剂和离子液体等新型溶剂作为高压电解液溶剂的优缺点,同时探讨了不同种类添加剂在常规碳酸酯溶剂体系中的作用机理。此外,本文还介绍了理论计算方法在锂离子电池高电压电解液研究中的应用,并对其在设计新型高电压电解液中的应用前景进行了展望。  相似文献   

4.
廖川平 《化学通报》2014,(8):865-871
本文比较了超级电容器、锂离子电池和超级电容电池的结构、原理、研究现状和发展前景。超级电容电池的正极具有超级电容器电极的结构和双电层储能机制,负极具有类似锂离子电池负极的结构和快速电化学储能机制。超级电容器和锂离子电池的发展空间都很有限,而作为两者结合的产物的超级电容电池可兼具高比功率、高比能量、高放电电压和长循环寿命的优点,是未来储能电池的发展方向之一,但还面临缺乏具有高分解电压的电解液和高充电电压下电解液中离子枯竭的问题。  相似文献   

5.
超级电容电池   总被引:4,自引:0,他引:4  
廖川平 《化学通报》2014,77(9):865-871
本文比较了超级电容器、锂离子电池和超级电容电池的结构、原理、研究现状和发展前景。超级电容电池的正极具有超级电容器电极的结构和双电层储能机制,负极具有类似锂离子电池负极的结构和快速电化学储能机制。超级电容器和锂离子电池的发展空间都很有限,而作为两者结合的产物的超级电容电池可兼具高比功率、高比能量、高放电电压和长循环寿命的优点,是未来储能电池的发展方向之一,但还面临缺乏具有高分解电压的电解液和高充电电压下电解液中离子枯竭的问题。  相似文献   

6.
水系储能器件具有固有的高安全性、环境友好性和成本低的优势,在未来智能电网、便携式/可穿戴电子产品等领域显示出巨大的应用潜力。然而水的热力学分解电压低、冰点高,导致水系电解液电化学稳定电压窗口窄以及凝固点高,极大地限制了水系储能器件的能量密度与宽温域应用。因此,设计耐高电压、抗冻的水系电解液,成为水系储能器件大规模、多场景应用的关键。本文系统综述了高电压/宽温域水系碱金属离子电池电解液设计的研究进展,从热力学和动力学角度出发,分别重点介绍提高电解液电压窗口和工作温度范围的各类策略以及相关作用机制。进一步提出宽温域、高压水系电解液的潜在设计思路,并对高性能水系碱金属离子电池的发展方向进行展望。  相似文献   

7.
锂离子电池作为一种绿色可充电电池,具有较高能量密度以及功率密度,是便携式电子产品的首选,并逐渐应用于动力汽车领域。为了更好地满足其应用需求,需要进一步提高当前锂离子电池的能量密度。不同于高压正极材料的快速发展,传统电解液在较高工作电压下容易分解,很大程度上阻碍了高能量密度锂离子电池的商业化应用。作为锂离子电池的重要组分,电解液对其多方面性能均具有重要影响,因此亟需提高电解液的工作电压以解决锂离子电池能量密度较低的问题。本文从新型有机溶剂以及高电压添加剂两方面入手,综述近年来国内外高压电解液的研究进展,介绍理论计算对于设计高压电解液的作用,并对高压电解液的发展及前景做出总结和展望。  相似文献   

8.
任岩  文焱  连芳  仇卫华 《化学通报》2015,78(2):107-112
目前提高锂离子电池能量密度的途径主要有提高锂离子电池的工作电压和应用高工作电压的正极材料,因此,锂离子电池高电压电解液的研究和开发势在必行。本文概述了锂离子电池电解液和高电压电解液的特点,介绍了前线轨道理论中的HOMO和LUMO对电解液设计的指导意义。尤其是结合日本知名企业和科研机构在高电压电解液方面的研究成果,阐述了两种实现电解质高电压化的途径,即提高溶剂本身的耐氧化性和使用添加剂,总结了氟代酯、氟化醚、硼酸酯、砜类和耐氧化添加剂等用于高电压电解液中的关键物质类型,并讨论了目前高电压电解液研究开发所带来的启示。  相似文献   

9.
锂离子电池在高电压下会导致严重的电解液分解以及不稳定的正极与电解质界面问题,严重制约高电压正极材料的商业化.粘结剂不仅可以将正极活性材料和导电炭紧密粘结在集流体上,还对构建电解质与正极之间的多尺度相容性界面起积极作用,因此,粘结剂的优化可以有效解决上述难题.本文提出了高电压锂离子电池正极粘结剂需具备的必要条件,如:粘结性能和机械性能优异,具有出色的电化学稳定性和热力学稳定性以及良好的离子和电子传输能力等.综述了近些年来高电压正极粘结剂的研究及发展现状,通过天然粘结剂和合成粘结剂对目前已报道的高电压粘结剂进行了评述,介绍了各种粘结剂对电极的粘结性能和包覆以及对锂离子电池性能的影响机制,重点阐述了粘结剂分子结构中的极性基团与活性物质间的相互作用,如氢键和离子-偶极相互作用,并讨论了设计开发高电压正极粘结剂的途径以及展望了高电压正极粘结剂的发展前景.  相似文献   

10.
高安全高电压电解液的开发是锂离子电池电解液发展的重要方向。有机硅化合物由于具有独特的理化性能,使其成为锂离子电池电解液领域的研究热点之一。本文综述了有机硅电解液的研究进展,重点从功能分子设计的角度介绍含碳酸酯基、氨基甲酸酯基、腈基、离子液体、含氟类的有机硅功能电解液溶剂制备及电池性能表现;详细阐述具有结构多样性的有机硅化合物用作高电压添加剂、高安全添加剂、高/低温添加剂、储存/耐自放电添加剂、吸酸吸水添加剂及其在不同电池材料体系中的应用。最后,对有机硅电解液的研究趋势和应用前景进行了展望。  相似文献   

11.
锂离子混合型电容器兼有锂离子电池和超级电容器的优点,在电化学储能领域具有广泛的应用前景. 但其产业化仍存在一系列的基础及工艺方面的问题,具体包括器件结构设计、电极材料筛选、预嵌锂工艺和电解液与电极的界面等. 本文结合作者课题组的研究工作介绍了近年来高能量密度的锂离子混合型电容器的研究进展,内容涉及锂离子电容器正/负极材料的筛选、预嵌锂工艺的优化、内并联结构的锂离子电池型超级电容器复合正极组成材料的调控、隔膜的选择、电解液的组成、以及器件的高/低温性能,分析了锂离子电容器的容量衰减机制,探讨了锂离子电池型超级电容器的储能机制,提出了未来对高能量密度的锂离子混合型电容器研究的展望.  相似文献   

12.
锂离子电池因其能量密度高,循环寿命长等优点已成为新型动力电池领域的研究热点,但其温度特性尤其是低温性能较差制约着锂离子电池的进一步使用. 本文综述了锂离子电池低温性能的研究进展,系统地分析了锂离子电池低温性能的主要限制因素. 从正极、电解液、负极三个方面讨论了近年来研究者们提高电池低温性能的改性方法. 并对提高锂离子电池低温性能的发展方向进行了展望.  相似文献   

13.
逐年加剧的能源短缺以及日益严重的环境污染问题使得发展电动汽车日益迫切.电动汽车安全问题对动力锂离子电池在大功率输出和高安全性能等方面提出了更高的要求.隔膜电解质体系是制约动力锂离子电池快速发展的重要瓶颈之一,因此,开发高性能的隔膜对提高动力锂离子电池的综合性能至关重要.本文综述了近年来隔膜材料的种类、制备工艺、性能以及本课题组在高安全性阻燃动力锂离子电池隔膜方面的研究进展,并对未来电池隔膜的发展方向进行了预期和展望.  相似文献   

14.
锂离子电池最常见的安全性问题主要出现在电解液和隔膜.热失控是导致锂离子电池产生安全事故的主要原因.改变电解液组分、增加电解液组分、引入阻燃添加剂等措施,能够有效缓解并抑制热效应,降低可燃性.改性聚烯烃隔膜是提高隔膜热稳定性的简单方法,使用高熔点的聚合物或无机材料对隔膜进行修饰,其本质类似于给隔膜穿上一层“外骨骼”,用来抵御热冲击和机械冲击.隔膜在保证具备基本功能的同时,还要更加环保,逐步转向可持续的生物质材料.本文针对近年来锂离子电池的安全保护措施进行了综述,主要包括近几年内部保护措施和外部保护措施的相关研究和探索方面的成果.详细介绍了最近报道的不易燃电解液、阻燃添加剂、隔膜、正极材料、限流设备和电池管理系统的作用机理和研究进展,并展望了未来锂离子电池安全性研究的发展方向.  相似文献   

15.
锂硫电池具有高理论能量密度(2600 Wh/kg)和高理论比容量(1675 mA·h/g),被视为最有可能替代锂离子电池实现商业应用的电化学储能系统之一。然而,锂硫电池所固有的缓慢氧化还原动力学和多硫化物的“穿梭效应”等问题严重影响了锂硫电池的循环性能以及循环寿命。目前,大部分综述主要集中于过量电解液下锂硫电池硫主体材料的设计制备方面,对贫电解液下锂硫电池性能的研究关注较少。基于此,本文介绍了贫电解液下不同电催化剂对锂硫电池氧化还原反应动力学和电化学性能的调控,主要分为非金属催化剂和金属催化剂两类,其中非金属催化剂包括非金属化合物、石墨烯、碳纳米管以及杂原子掺杂碳材料;金属催化剂包括钴基催化剂、钼基催化剂、铁基催化剂以及多金属基异质结构。最后,对推动锂硫电池实现商业应用需要进一步开展的研究提出了思考并进行了展望。  相似文献   

16.
随着锂离子电池的市场拓展,安全性问题已成为电动汽车、大规模储能等应用领域关注的首要问题. 目前商品化的锂离子电池普遍采用低沸点碳酸酯类电解液,其易燃性成为电池不安全性的主要隐患. 为了提高锂离子电池的本征安全性,阻燃或不燃性电解液成为近年来研究的热点,其中以磷酸酯为溶剂的阻燃型或不燃型电解液受到广泛关注. 本文主要介绍磷酸酯阻燃和不燃电解液的研究状况,分析了这类电解液与锂离子电池正负极的兼容性问题,讨论了改善磷酸酯电解液电化学兼容性的途径,提出了发展高效、安全、稳定的不燃电解液的一些思路.  相似文献   

17.
以纤维锂离子电池为代表的纤维储能电池凭借其独特的一维结构,在物联网、可穿戴技术等新兴领域发挥着重要作用.然而,这类纤维储能电池在面向实际应用的过程中存在高效制备和性能匹配等难题尚未解决,最终无法实现由科学理论向实际应用的过渡.本文结合本课题组近期工作,总结了柔性纤维储能电池方面的研究进展.结合纤维锂离子电池的电化学性能、力学性能以及使用耐受性,首先讨论并归纳了纤维锂离子电池的连续化制备方法;进一步,总结了基于连续化制备的纤维锂离子电池所构建的储能织物以及与可穿戴设备集成等方面的应用,重点聚焦于其在大数据云健康、未来通讯、生物医学等领域的应用场景;最后,总结了柔性纤维储能电池的发展现状并展望了该研究领域的未来发展方向.  相似文献   

18.
总结了金属有机框架(MOFs)材料在锂离子电池电解液中的研究进展. 通过归纳锂离子电池长期存在的一些缺陷, 随后将MOFs材料作为离子筛、人造负极保护层、准固态电解质以及用来调节电解液构型, 使得锂离子电池的性能得到显著提升. 最后, 基于MOFs材料本身的特性, 还对MOFs材料在电化学储能领域中的后续应用进行了合理地前瞻性展望.  相似文献   

19.
高电压正极材料的应用是提高锂离子电池能量密度的有效手段,然而高电压下正极/电解液界面稳定性成为决定锂离子电池在高电压工作条件下循环性能和安全性能的关键因素,因此高电压下正极/电解液界面具有重要的研究价值. 但是,目前报道的正极/电解液界面的研究中通常使用传统的极片制备方法,这需要引入导电剂和粘结剂,会对后期正极活性物质表面钝化膜的形貌和组分表征带来干扰,甚至造成固体电解质界面(SEI)膜存在的假象,难以获得正极材料与电解液之间界面的本征信息. 这里,我们采用溶胶凝胶旋涂法制备了不含导电剂和粘结剂的镍锰酸锂(LNMO)正极,以其为研究对象,通过扫描电镜(SEM)、原子力显微镜(AFM)和X射线光电子能谱(XPS)技术,结合电化学阻抗谱(EIS)研究了LNMO正极/电解液界面在充放电过程中的结构演变过程以及本征性质. 研究结果显示在充放电过程中,电解液中溶剂和电解质都会参与反应,其中LiPF6的降解主要发生在高电压下,其降解产物在放电过程中又会被反应消耗掉. 它们的降解产物沉积到LNMO正极形成表面膜,该表面膜的主要成分随着电压的不同组分有所不同.  相似文献   

20.
高能量密度、大容量、高工作电压、低成本、环境友好的二次电池是未来储能电池技术的发展方向。高比能的镁离子电池(MIBs)是以镁或镁合金为负极的二次电池,是一种重要的有望用于电动汽车的新型绿色储能电池。镁离子电池发展缓慢的主要问题是镁离子在正极材料中扩散速度慢。因此,本文综述了五类晶体结构的镁-过渡金属复合物类型(包括一维隧道结构、二维层状结构、三维尖晶石结构、三维NASICON结构、三维橄榄石结构)、制备方法、电化学性能等,还阐述了镁离子在固体中扩散行为及提高扩散速度的措施,最后展望了镁离子电池正极材料镁-过渡金属复合物的重要研究方向。寻找高电压(大于3 V)、高比能量、高可逆性的正极材料和与其匹配的电解液是实现镁离子电池第三次突破的关键。我们希望本文有利于更深入地了解镁离子电池正极材料,促进镁离子电池的发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号