首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 816 毫秒
1.
The formation mechanisms of complex BaSO(4) fiber bundles and cones in the presence of polyacrylate sodium salt via a bioinspired approach at ambient temperature in an aqueous environment are reported. These complex organic-inorganic hybrid structures assemble after heterogeneous nucleation of amorphous precursor particle aggregates on polar surfaces, and the crystallization area can be patterned. In contrast to earlier reports, three different mechanisms based on the oriented attachment of nanoparticles were revealed for the formation of typical fibrous superstructures depending on the supersaturation or on the number of precursor particles. (A) High supersaturation (S > 2): large amorphous aggregates stick to a polar surface, form fiber bundles after mesoscopic transformation and oriented attachment, and then form a narrow tip through polymer interaction. (B) Low supersaturation (S = 1.02-2): only a few fibers nucleate heterogeneously from a single nucleation spot, and amorphous particles stick to existing fibers, which results in the formation of a fiber bundle. (C) Vanishing supersaturation (S = 1-1.02): nucleation of a fiber bundle from a single nucleation spot with self-limiting repetitive growth as a result of the limited amount of building material. These growth processes are supported by time-resolved optical microscopy in solution, TEM, SEM, and DLS.  相似文献   

2.
BaSO4 fibres with morphological complexity were formed in aqueous solution with polyacrylate and partially monophosphonated poly(ethyleneoxide)-block-poly(methacrylic acid) additives by a simple precipitation reaction. For polyacrylate, formation of the fibrous deposits was strongly dependent on the level of supersaturation (S) and Ba2+:polymer molar ratio (R). At S = 60 to 80, and R = 3 to 14, highly anisotropic crystalline fibres consisting of bundles of BaSO4 nanofilaments were formed after several weeks, although the yield was low. The nanofilaments were also organized into cone-shaped aggregates at S = 80, and at lower R values these formed higher-order structures that consisted of multiple cone-on-cone assemblies with remarkable self-similarity. Increasing the supersaturation produced ovoid or cross-shaped dendritic particles for the range of molar ratios studied. In contrast, BaSO4 crystallisation in the presence of a partially phosphonated block copolymer gave a high yield of BaSO4 fibres up to 100 microm in length, and consisting of co-aligned bundles of 30 nm-diameter defect-free single-crystal nanofilaments with a uniform growth tip. A model for the defect-free growth of BaSO4 nanofilaments in aqueous polymer solutions based on amorphous precursor particles, vectorially directing forces and van der Waals attraction is proposed.  相似文献   

3.
The spherical and cubic mesoporous BaSO(4) particles with high surface area were successfully produced via one-step process through precipitation reaction in aqueous solution of Ba(OH)(2) and H(2)SO(4) with ethylene glycol (n-HOCH(2)CH(2)OH) as a modifying agent. The BaSO(4) nanomaterial revealed that the high surface area and the mesoporous was stable up to 400 degrees C. Agglomerate mesoporous barium sulfate nanomaterials were obtained by the reaction of Ba(2+) and SO(2-)(4) with ethylene glycol aqueous solution. The ethylene glycol was used to control the BaSO(4) particle size and to modify the surface property of the particles produced from the precipitation. The dried and calcined mesoporous BaSO(4) nanomaterials were characterized by X-ray diffraction (XRD), BET surface area and N(2) adsorption-desorption isotherm, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared resonance (FTIR) and thermogravimetric analysis (TGA). The as-prepared mesoporous dried BaSO(4) possesses a high BET surface area of 91.56 m(2) g(-1), pore volume of 0.188 cm(3) g(-1) (P/P(0)=0.9849) and pore size of 8.22 nm. The SEM indicates that the morphology of BaSO(4) nanomaterial shows shell like particles up to 400 degrees C, after that there is drastically change in the material due to agglomeration. Synthesis of mesoporous BaSO(4) nanomaterial is of significant importance for both sulphuric acid decomposition and oxidation of methane to methanol.  相似文献   

4.
Scale inhibition study by turbidity measurement   总被引:2,自引:0,他引:2  
The concept of a critical supersaturation ratio (CSSR) has been used to characterize the effectiveness of different types of scale inhibitors, inhibitor concentration, and precipitating solution pH in order to prevent the formation of barium sulfate scale. The scale inhibitors used in this work were aminotrimethylene phosphonic acid (ATMP), diethylenetriaminepentamethylene phosphonic acid (DTPMP), and phosphinopolycarboxylic acid polymer (PPCA). The CSSR at which barium sulfate precipitates was obtained as a function of time for different precipitation conditions and was used as an index to evaluate the effect of the precipitation conditions. The results showed that the CSSRs decrease with increasing elapsed time after mixing the precipitating solutions, but increases with increasing scale inhibitor concentration and solution pH. The CSSR varies linearly with the log of the scale inhibitor concentration and with the precipitating solution pH. A SEM analysis showed that the higher the scale inhibitor concentration and solution pH, the smaller and more spherical the BaSO4 precipitates. Analysis of the particle size distribution revealed that increasing the elapsed time, the scale inhibitor concentration, and precipitating solution pH, all produce a broader particle size distribution and a smaller mean diameter of the BaSO4 precipitates. DTPMP and PPCA were the most effective BaSO4 scale inhibitors per ionizable proton and the most effective on a concentration basis, respectively.  相似文献   

5.
A systematic study of the influence of various experimental parameters on the morphology and size of BaSO4 crystals after crystallization from water in the presence of diethylenetriamine penta (methylphosphonic acid) (DETPMP) was presented. Depending on the experimental conditions, there are various crystal morphologies including flowers, ellipsoids, spheres, or conjoined spheres. The results indicated that the experimental parameters, such as the concentration of the inhibitor, the pH of solution, the aging of the particle growth, and the ratio [Ba2+]/[SO4(2-)], are important for the morphology and size of BaSO4. The morphogenesis of BaSO4 is controlled by the chelation of DETPMP with Ba2+ at the nucleation and the surface adsorption inhibition of crystal growth.  相似文献   

6.
Rodlike tobacco mosaic virus (TMV) has been found to assemble into a 2D superlattice in aqueous solution with hexagonally packed structures in the presence of Ba(2+) through like-charge attraction whereas lower-Z divalent ions such as Zn(2+), Cd(2+), Mg(2+), and Ca(2+) induce only liquidlike ordering. The molar ratio between Ba(2+) and TMV is a crucial parameter in the formation of the superlattice. There is a critical molar ratio of Ba(2+) to TMV at which TMV exhibits a transition from a nonordered colloidal state to an ordered crystalline state. It is also found that the superlattice is formed regardless of the pH and TMV concentration within the range studied.  相似文献   

7.
We have determined the structure of uranyl, UO(2)(2+), and Th(4+) complexes formed in aqueous solution with 4,5-dihydroxy-3,5-benzenedisulfonate (Tiron) as function of pH and concentration. At equimolar concentrations of 0.05 M UO(2)(2+) and Tiron, the predominant species was found to be aqueous uranyl at pH = 2.0. At pH = 6.0, the formation of a 3:3 UO(2)(2+):Tiron trimer (proposed in earlier studies) was observed. In this structure, bidentate catecholate complexation to Tiron as well as oxygen bridging between uranyl units is detected. Th(4+) structural changes were observed both as a function of pH and Th:L (L = Tiron) ratio. At Th:L = 1:1 and pH = 1.4, a monomeric complex is observed with each Th center complexing monodentate to approximately 2 sulfonate functional groups. At pH 4.0 similar sulfonate ligation is observed along with oligomer formation. At pH 6.0 thorium hydrolysis products are detected, with little evidence for inner-sphere Tiron coordination. When the Th:L is changed to 1:2 at pH = 6.0, a stable oligomeric complex is formed that dominates the speciation for Th:L ratios up to 1:5. This complex is characterized by bidentate catechol and monodentate sulfonate ligation to Tiron along with oxygen bridging between Th(4+) atoms and is consistent with the formation of the 2:3 Th:L polymeric species proposed from earlier work. At a Th:L ratio of 1:10, Th(4+) complexation is dominated by bidentate catechol ligation and the formation of a monomeric Th(Tiron)(x) species, where x > or = 2.  相似文献   

8.
Gholivand MB  Bamdad F  Ghasemi J 《Talanta》1998,46(5):875-884
Xylenol orange (XO) is one of the complexometric indicators, that can bind to metal cations at both their amino and acidic groups. In this study the protonation constants and distribution diagrams of XO were studied pH-metrically, and the corresponding six protonation constants were calculated. The complex formation between XO (L) and alkaline earth ions (M) was investigated and the formation constants of the resulting complexes ML, MHL, M(2)L and M(2)HL were determined. The stabilities of both ML and M(2)L complexes were found to vary in the order Mg(2+)> Ca(2+)> Sr(2+)> Ba(2+). Studying the complex formation between Al(3+) ion (M) and XO (L), it was observed that four complexed species with stoichiometries ML, ML(2), MHL and MH(2)L could be formed in solution. It was also found that the Al L(2) complex can act as a chelating agent for further complexation with two cations other than Al(3+) ion (i.e. Ba, L, Al, L, Ba, Mg, L, Al, L, Mg, and Mg, L, Al, L, Ba). The formation constants of the resulting mixed complexes were determined and their distribution diagrams were investigated.  相似文献   

9.
We study the formation of layers of metal stearates at the interface between a decane solution of stearic acid and aqueous salt solutions of variable composition and pH by monitoring the evolution of their mechanical, optical, and chemical properties as a function of time after formation of the interface. For values of the pH below the pK(a) of stearic acid hardly any interfacial activity is observed. For pH > pK(a), stearic acid deprotonates at the interface and forms metal stearates, eventually leading to the formation of macroscopic solid layers. Dynamic interfacial tension measurements reveal that the process takes place in several stages, which we attribute to the successive formation of dilute and dense monolayers followed by three-dimensional growth. In the presence of divalent ions, the solid layers display a significant increase in the dilatational storage modulus. Experiments performed with an aqueous phase containing multiple cation species (artificial seawater) give rise to particularly pronounced growth of solid layers, which preferentially incorporate Ca(2+) as revealed by X-ray photoelectron and infrared spectroscopy. Our results highlight in particular the importance of the complex synergistic effects of simultaneously present monovalent and divalent cation species on the interfacial adsorption.  相似文献   

10.
The mechanisms of adsorption and association for sodium carboxymethylcellulose (NaCMC) in calcium carbonate suspensions have been determined from isothermal calorimetry and adsorption measurements. The equilibrium adsorption isotherms were determined by two different methods of separation; a depletion method and a serum exchange method. The enthalpy of dilution for NaCMC was determined on supernatants obtained from the calcium carbonate suspensions in order to investigate the interaction between NaCMC and dissolved species from the mineral. For comparison, NaCMC was injected into CaCl(2) solutions in order to determine the role of calcium ions in the adsorption process. The initial part of the adsorption isotherm showed a quasi-infinite slope indicating a high affinity for the NaCMC to the calcium carbonate surface, which was significantly reduced when anionic sodium polyacrylate was preadsorbed onto the calcium carbonate implying competitive adsorption. An endothermic enthalpy change was observed between the NaCMC and the calcium carbonate surface, suggesting attachment of the carboxylic acid groups onto the hydrated calcium sites. A similar endothermic enthalpy was observed when NaCMC was injected into CaCl(2) solutions or supernatants obtained from the calcium carbonate suspensions, indicating a complexation of carboxylic acid groups and hydrated calcium ions. It was concluded that the mechanisms of interaction of NaCMC in calcium carbonate suspensions are primarily an association between NaCMC and Lewis acid sites on the calcium carbonate surface and the formation of NaCMC-Ca(2+) complexes in the bulk solution, both of which will be affected by the amount of anionic sodium polyacrylate present.  相似文献   

11.
12.
The complex formation between Ba(2+) and different diaza-18-crown-6 ligands has been studied using a new spectrophotometric method. In the presence of undissolved solid ligand the concentration of the dissolved ligand increases in salt containing solutions due to complex formation. The change in the total concentration of the dissolved ligand can be monitored by UV-VIS spectrometry if the ligand contains absorbing groups. However, any other method to measure the variation of the ligand concentration in solution, e.g. the total organic carbon content, allows the calculation of the stability constants of the complexes formed. It is not essential for the determination of the stability constant to know the absolute concentration of the ligand in solution. The experimental method described offers some advantages compared with other experimental techniques. The main advantage is that only very small amounts of ligands are needed.  相似文献   

13.
Chelation of Nd(3+) by D-glucosamine (DGA) and chitosan was investigated in solution at near-physiological pH and ionic strength. This research demonstrates the first example of the lanthanide ion heteroleptic hydroxo-carbohydrate complex in solution. Amino-carbohydrates DGA and chitosan suppressed formation of polynuclear Nd(3+) species at elevated pH.  相似文献   

14.
The binding capacity of fulvic and alginic acids towards trimethyl tin(IV) cation was quantitatively determined in order to evaluate the sequestering ability of toxic organometallic compounds by natural organic matter. Investigations were performed in the pH range of natural waters (5–8.5) where the carboxylate groups, largely present in both sequestering agents, are the main binding sites. A chemical interaction model, according to which both the protonation of polyelectrolyte ligands and the hydrolysis of the organotin cation in NaCl aqueous solution were considered, was used to define the speciation of the systems under investigation. Measurements performed at different ionic strength values (0.1, 0.25, 0.5 and 0.7 mol L?1, NaCl) allowed us to consider the dependence of stability constants on the ionic strength, and to calculate the formation constants at infinite dilution. Results obtained show the formation of the complex species TMT(L), TMT(L)2 and TMT(L)(OH) for L = fulvic acid and TMT(L) for L = alginic acid, respectively. In order to compare the strength of interaction of these natural poly electrolytes with other analogous synthetic polyelectrolytes, measurements were also carried out on the trimethyltin(IV)–polyacrylate (5.1 kDa) system, and in this case the formation of TMT(L), TMT(L)2 and TMT(L)(OH) species was found. Results show the following trend of stability for the species TMT(L) in the systems investigated: TMT–fulvate ≈ TMT–polyacrylate > TMT–alginate. On the basis of the stability data obtained, the lowest concentration of fulvic and alginic acids, able to act as sequestering agents towards triorganotin(IV) cation in the conditions of natural waters, was also calculated. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
The method of diffuse refection has been used for the investigation of complexation reactions between Mg, Ca, Sr, and Ba ions (2+) with bisazosubstituted chromotropic acid derivatives after their sorption on a solid phase. Different adsorbents and methods of the immobilization of metal ions and organic reagent have been tested. The influence of pH on the sorption and subsequent reaction between alkaline-earth metals and organic reagents has been studied. The dependence of analytical signals on the reagent nature has been discussed. Systems have been proposed for the determination of the total concentration of Ca, Sr, and Ba and also Sr and Ba in the concentration range n × 10−4 M; these systems include the sorption of elements on the solid phase of polyacrylonitrile fiber loaded with the Chelex-100 ion exchanger from the solution with pH 7.0 ± 0.5, subsequent treatment of discs with the solutions of Carboxynitrazo or Ortanyl B and the measurement of the coefficients of diffuse refection.  相似文献   

16.
The origin of the surface potential of calcium carbonate in aqueous dispersions and the dissolution of calcite in systems containing excess Ca(2+) and CO(3)(2-) have been the subjects of this study. In addition, stabilization of calcite particles with an anionic polyelectrolyte (sodium polyacrylate (NaPA)) and the effect on surface potential and dissolution of calcite have been studied. Preferential dissolution of either Ca(2+) or CO(3)(2-) from the surface, which is governed by the partial pressure of CO(2) in solution and the pH of the solution, mainly determines the surface potential. Both lattice ions (Ca(2+) and CO(3)(2-)) adsorb onto the surface and thus alter the surface potential. NaPA adsorbs strongly onto the calcite surface regardless of background electrolyte concentration, and reverses the surface potential to negative values. Chelation of the surface due to NaPA can be partly prevented by adding Ca(2+) to the dispersion.  相似文献   

17.
Aqueous trivalent aluminum (Al) ions and their oligomers play important roles in diverse areas, such as environmental sciences and medicine. The geometries of octahedral Al(H(2)O)(6)(3+) and tetrahedral Al(OH)(4)(-) species have been studied extensively. However, structures of intermediate hydrolysis products of the Al(III) ion, such as the penta-coordinated Al(OH)(2+) species, which exists at pH values ranging from 3.0 to 4.3, and their mode of formation have been poorly understood. Here, we present that a trigonal bipyramidal Al(OH)(H(2)O)(4)(2+) structure is formed in aqueous solution and how this monomeric species dimerizes to a dinuclear [(H(2)O)(4)Al(OH)(2)Al(H(2)O)(4)](4+) complex in aqueous solution. The Gibbs free energy change calculations indicate that the formation of the dinuclear complex is preferred over the existence of two single trigonal bipyramidal Al(OH)(H(2)O)(4)(2+) species in aqueous solution. This study captures the solution dynamics and proton transfer in the oligomerization reactions of penta-coordinated Al(OH)(2+) species in aqueous solution.  相似文献   

18.
FTIR-ATR was used to examine in situ the interaction of polyacrylate and hematite at pH 13. Static light scattering and mobility measurements were used to assess solution polyacrylate dimensions and hematite surface charge, respectively. Polyacrylate adsorption occurred only with the addition of electrolyte (e.g., NaCl), and it was found that excess cations, up to approximately 1 M, facilitated adsorption, above which the effect was found to plateau. At pH 13 and at low ionic strength, adsorption of polyacrylate onto hematite is facilitated by cations in solution shielding both the negative acrylate functionality of the polymer and the negative hematite surface. The shielding of the hematite surface continues to increase with increasing salt concentration up to a measured 3 M. Similarly, the shielding of the polymer increased with electrolyte concentration up to approximately 1 M salt, beyond which no further increase in shielding was observed. At this concentration the polymer assumes a finite minimum size in solution that ultimately limits the amount adsorbed. The dimension of the polymer in solution was found to be independent of monovalent cation type. Thus, at high pH and high ionic strength adsorption is determined by the degree of hematite surface charge reduction. The cation-hematite surface interaction was found to be specific, with lithium leading to greater polyacrylate adsorption than sodium, which was followed by cesium. The stronger affinity of lithium for the hematite surface over sodium and cesium is indicative of the inverse lyotropic adsorption series and has been rationalized in the past by the "structure-making-structure-breaking" model. These results provide a useful insight into the likely adsorption mechanism for polyacrylate flocculants at high pH and ionic strength onto residues in the Bayer processing of bauxite.  相似文献   

19.
Interaction of sodium dodecyl sulfate (SDS) with the cationic polyelectrolyte poly(ethyleneimine) (PEI) was investigated in this study. Turbidity measurements were performed in order to analyze the interaction and complex formation in bulk solution as a function of polymer concentration and pH. Surface tension measurements were made to investigate the properties of SDS/PEI/water mixtures at air/solution interface. Results revealed that SDS/PEI complexes form in solution depending on the surfactant and polymer concentration. A decrease was observed in surface tension values in the presence of SDS/PEI mixtures compared to the values of pure SDS solutions. Both solution and interfacial properties exhibited pH dependent behavior. A shift was seen in the critical micelle concentration of SDS solutions as a function of PEI concentration and solution pH. Monovalent and divalent salt additions showed some influence on the interfacial properties of SDS solutions in the presence of PEI.  相似文献   

20.
Adsorption of cations (Na(+), Ca(2+), Ba(2+)) onto negatively charged (pH 10.4) hematite (alpha-Fe(2)O(3)) particles has been studied. The oxide material was carefully prepared in order to obtain monodisperse suspensions of well-crystallized, quasi-spherical particles (50 nm in diameter). The isoelectric point (IEP) is located at pH 8.5. Adsorption of barium ions onto oxide particles was carried out and the electrophoretic mobility was measured throughout the adsorption experiment. Comparison with calcium adsorption at full coverage reveals a higher uptake of Ba(2+). In both cases it shows also that chloride ions coadsorb with M(2) ions. Simultaneous uptake of the positive and negative ions explains why the electrophoretic mobility does not reverse to cationic migration. A theoretical study of the surface speciation has been carried out, using the MuSiC model. It reveals the presence of negative as well as positive sites on both sides of the point of zero charge (PZC) of the hematite particles, which may explain the coadsorption of Ba(2+) and Cl(-) at pH 10.4. The effective charge of the oxide particles, calculated from the electrophoretic mobility, is in very good agreement with the results found with the MuSiC modelization and the chloride/barium adsorption ratio. It also verifies the theory of ionic condensation. Calorimetric measurements gave a negative heat for the overall reaction occurring when Ba(2+)/Cl(-) ions adsorb onto hematite. Despite the fact that anions (Cl(-) and OH(-)) adsorption onto mineral oxides is an exothermic phenomenon, it is likely that barium and calcium adsorption is endothermic, denoting the formation of an inner-sphere complex as reported in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号