首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 768 毫秒
1.
Our understanding of metal ion adsorption to clay minerals has progressed significantly over the past several decades, and theories have been promulgated to describe and predict the impacts of pH, ionic strength, and background solution composition on the extent of adsorption. Studies evaluating the effects of ionic strength on adsorption typically employ a broad range of background electrolyte concentrations. Measurement of pH in these systems can be inaccurate when pH values are measured with liquid junction pH probes calibrated with standard buffers due to changes in the liquid junction potential between standard, low ionic strength (0.05 M) buffers and high ionic strength solutions (>0.1 M). The objective of this research is to determine the extent of the error in pH values measured at high ionic strength, and to develop an approach for accurately measuring pH over a range of ionic strengths using a combined pH electrode. To achieve this objective, the adsorption of cobalt (10(-5) M) onto gibbsite (10 g/L) from various electrolyte solutions (0.01-1 M) was studied. The pH measurements were determined from calibrations with standard buffers and ionic strength corrected buffer calibrations. The results show a significant effect of the aqueous solution background electrolyte anion and ionic strength on pH measurement. The 0.5 and 1 M ionic strength metal ion adsorption edges shifted to lower pH with increasing ionic strength when pH was calibrated with standard buffers whereas no shift in the adsorption edges was observed when calibrated with ionic strength corrected buffers. Therefore, to obtain an accurate pH measurement, pH calibration should contain the same electrolyte and ionic strength as the samples.  相似文献   

2.
The diffusion coefficients of hematite particles in polyelectrolyte solution have been investigated using dynamic light scattering. Two apparent diffusion coefficients, a fast and a slow diffusional mode, are observed for the hematite particles in high-molecular-weight sodium polyacrylate solution at pH 10.5. The slow diffusion coefficient (Dslow) shows a decrease with increase in polyelectrolyte concentration. The fast diffusion coefficient (Dfast) shows an increase to a maximum with increasing polyelectrolyte concentration and then a rapid decrease as the polyelectrolyte concentration increases further. With an increase in ionic strength from 10(-4) to 0.1 M NaNO3, the maximum value of Dfast increased in magnitude, while the polyacrylate concentration at which the maximum occurs is seen to increase. The dependence of Dfast on the measurement angle indicates that it is coupled to the fluctuations of the chains. The observed behavior is attributed to the hematite probe particle sensing both macroscopic (viscous) and elastic fluctuations associated with the polyelectrolyte motion.  相似文献   

3.
The sorption of Co(II) on colloidal hematite was studied as a function of pH, ionic strength, and Co(II) concentration. Two different techniques were used, yielding two different sets of information: (i) potentiometric titrations that provide information on the number of protons released as a function of pH owing to the sorption of Co(II) and (ii) measurement of the amount of cobalt sorbed on the surface as a function of pH using a radioactive tracer, (60)Co. At low Co(II) concentrations (10(-8) M), the sorption was found to be independent of ionic strength but there seems to be a weak ionic strength dependence at higher Co(II) concentrations (10(-4) M). The adsorption edge moved to higher pH with increasing Co(II) concentration. For the high Co(II) concentration, the number of protons released per cobalt sorbed increased from zero to approximately 1.5. The basic charging properties of hematite were modeled with four different surface complexation models. The 1-pK Basic Stern Model (BSM), with binding of electrolyte ions to the Stern plane, seems to be the most reasonable model if the ambition is to describe experimental data at different ionic strengths. The sorption of cobalt was modeled with the 1-pK BSM. By introducing a low concentration of high affinity surface sites for cobalt sorption it was possible to model the sorption in very wide cobalt concentrations, ranging from 10(-8) M to 10(-4) M. Copyright 2000 Academic Press.  相似文献   

4.
The adsorption of carboxymethylcellulose (CMC) in the presence or absence of the surfactants: anionic SDS, nonionic Triton X-100 and their mixture SDS/TX-100 from the electrolyte solutions (NaCl, CaCl2) on the alumina surface (Al2O3) was studied. In each measured system the increase of CMC adsorption in the presence of surfactants was observed. This increase was the smallest in the presence of SDS, a bit larger in the presence of Triton X-100 and the largest when the mixture of SDS/Triton X-100 was used. These results are a consequence of formation of complexes between the CMC and the surfactant particles. Moreover, the dependence between the amount of surfactants’ adsorption and the CMC initial concentration was measured. It comes out that the surfactants’ adsorption amount is not dependent on the CMC initial concentration and moreover, it is unchanged in the whole measured concentration range. The influence of kind of electrolyte, its ionic strength as well as pH of a solution on the amount of the CMC adsorption at alumina surface was also measured. The amount of CMC adsorption is larger in the presence of NaCl than in the presence of CaCl2 as the background electrolyte. It is a result of the complexation reaction between Ca2+ ions and the functional groups of CMC belonging to the same macromolecule. As far as the electrolyte ionic strength is concerned the increase of CMC adsorption amount accompanying the increase of electrolyte ionic strength is observed. The reason for that is the ability of electrolyte cations to screen every electrostatic repulsion in the adsorption system. Another observation is that the increase of pH caused the decrease of CMC adsorption. The explanation of this phenomenon is connected with the influence of pH on both dissociation degree of polyelectrolyte and kind and concentration of surface active groups of the adsorbent.  相似文献   

5.
Upon reverse flotation of iron ore, the surface of the iron ore concentrate may become partially hydrophobized due to adsorption of flotation collector, which is facilitated by the calcium ions present in the process water. Hydrophobic areas on the concentrate surface may introduce problems in subsequent pelletization of the concentrate. A possible way to restore the wettability of the surface could be by modifying the surface with a hydrophilic polymer. The effect of hydrophilic polymers of different types, viz. cationic, anionic, and non-ionic, on the wettability of the magnetite surface after adsorption of a surfactant was investigated. Although all the polymers could adsorb on magnetite at pH 8.5, the contact angle measurements revealed that only anionic ammonium polyacrylate could decrease the contact angle of synthetic magnetite after surfactant adsorption to a level close to that of as-synthesized magnetite. Such effect was probably achieved due to shielding of the hydrophobic surfactant chains from the aqueous phase by hydrophilic polyacrylate molecules. The fact that polyacrylate adsorption on magnetite occurred via calcium ions makes polyacrylate suitable for application in calcium-rich process water. The results presented in this work illustrate that ammonium polyacrylate could be successfully used to improve the wettability of magnetite after adsorption of surfactants.  相似文献   

6.
The adsorption of Co2+, Ni2+, Cu2+, and Zn2+ onto amorphous hydrous manganese dioxide (delta-MnO2) has been studied using two methods, viz., isotherms at constant pH in the presence of buffer solution and pH variation in the absence of buffer solution from a fixed metal ion concentration. While the adsorption isotherm experiments were carried out in 0.5 M NaCl only, pH variation or batch titration experiments were carried out in 0.5 M NaCl, 0.01 M NaCl, and 0.01 M KNO3 solutions. The complex nature of adsorption isotherms at constant pH values indicates that adsorption of all the cations is non-Langmuirian (Freundlich) and takes place on the highly heterogeneous oxide surface with different binding energies. The proton stoichiometry derived from isotherms at two close pH values varies between 0.3 and 0.8. The variation of fractional adsorption with pH indicates that the background electrolyte solution influences the adsorption of cations through either metal-like or ligand-like complexes with Cl-, the former showing a low adsorption tendency. The proton stoichiometry values derived from the Kurbatov-type plot varies not only with the electrolyte solution but also with the adsorbate/adsorbent ratio. The variation of fractional adsorption with pH can be modeled either with the formation of the SOM+ type or with a combination of SOM+ and SOMOH type complexes, depending upon the cation and electrolyte medium. The equilibrium constants obtained from Kurbatov-type plots are found to be most suitable in these model calculations. Adsorption calculated on the basis of ternary surface metal-chlorocomplex formation exhibits very low values.  相似文献   

7.
The electric field-driven transport of ions through supported mesoporous gamma-alumina membranes was investigated. The influence of ion concentration, ion valency, pH, ionic strength, and electrolyte composition on transport behavior was determined. The permselectivity of the membrane was found to be highly dependent on the ionic strength. When the ionic strength was sufficiently low for electrical double-layer overlap to occur inside the pores, the membrane was found to be cation-permselective and the transport rate of cations could be tuned by variation of the potential difference over the membrane. The cation permselectivity is thought to be due to the adsorption of anions onto the pore walls, causing a net negative immobile surface charge density, and consequently, a positively charged mobile double layer. The transport mechanism of cations was interpreted in terms of a combination of Fick diffusion and ion migration. By variation of the potential difference over the membrane the transport of double-charged cations, Cu2+, could be controlled accurately, effectively resulting in on/off tunable transport. In the absence of double-layer overlap at high ionic strength, the membrane was found to be nonselective.  相似文献   

8.
In this work, adsorption of Ni(II) from aqueous solution onto hematite under various solution chemistry and temperature was investigated. The results indicated that the pseudo-second-order rate equation fitted the kinetic adsorption well. The adsorption of Ni(II) onto hematite was strongly dependent on pH and ionic strength. At low pH, the adsorption was dominated by outer-sphere surface complexation or ion exchange, whereas inner-sphere surface complexation was the main adsorption mechanism at high pH. A positive effect of FA on Ni(II) adsorption was found at pH < 8.0, whereas a negative effect was observed at pH > 8.0. The Langmuir, Freundlich, and D–R models were applied to simulate the adsorption isotherms at three different temperatures of 293.15, 313.15 and 333.15 K. The thermodynamic parameters were calculated from the temperature dependent adsorption, and the results indicated that the adsorption was endothermic and spontaneous.  相似文献   

9.
Using “pure” natural hematite selected from a high silica Nigerian hematitic ore, oleate adsorption densities at the hematite–water interface were determined in the presence of various inorganic ions (anions and cations) of different charges and at varying concentrations. Adsorption density was determined using electrical conductivity measurements. The specific surface area of the hematite particles was determined using the method of adsorption of paranitrophenol in aqueous solution. Inorganic ions in solution depressed oleate adsorption at the aqueous hematite surface. The charge of the ion proved to be the dominant factor determining the depression of oleate adsorption. Ionic strength also was an influence, up to a limiting value at which monolayer oleate coverage of the hematite surface occurred. The inorganic ions in solution are considered to function through nonspecific adsorption in the diffuse region of the electric double layer.  相似文献   

10.
采用电子自旋共振技术结合自旋标记方法研究了聚丙烯酸钠在Al2O3/水界面吸附的分子构型和运动行为。结果表明,哌啶氮氧自由基在聚丙烯酸钠分子上是链间标记,它的运动受到聚合物长链的束缚;聚丙烯酸钠在Al2O3上的吸附等温线呈Langmuir型,随表面吸附量的增加,吸附在Al2O3上的聚丙烯酸钠分子的固着链节分数减小,从平衡浓度0.25mg/ml时的0.90变化到饱和吸附时的0.65。聚丙烯酸负离子通过静电引力多点吸附在Al2O3表面,分子中的大部分链节平躺在Al2O3表面,少部分链节伸向溶液。  相似文献   

11.
Kinetics of adsorption of p-hydroxy benzoate and phthalate on hematite-electrolyte interface were investigated at a constant ionic strength, I = 5 x 10(-4) mol dm(-3), pH 5 and at three different temperatures. The state of equilibrium for the adsorption of p-hydroxy benzoate onto hematite surfaces was attained at 70 h, whereas it was 30 h for phthalate-hematite system. None of the three kinetics models (Bajpai, pseudo first order and pseudo second order) is applicable in the entire experimental time period; however, the pseudo second order kinetics model is considered to be better than the pseudo first order kinetics model in estimating the equilibrium concentration both the p-hydroxy benzoate-hematite and phthalate-hematite systems. The variation of adsorption density of p-hydroxy benzoate and phthalate onto hematite surfaces as a function of concentration of adsorbate was studied over pH range 5-9 at a constant ionic strength, I = 5 x 10(-4) mol dm(-3) and at constant temperature. The adsorption isotherms for both the systems were Langmuir in nature and the maximum adsorption density (Gamma(max)) of p-hydroxy benzoate is approximately 1.5 times more than that of phthalate on hematite at pH 5 and 30 degrees C in spite of an additional carboxylic group at ortho position in phthalate. This is due to the more surface area coverage by phthalate than that of p-hydroxy benzoate on hematite surface. The activation energy was calculated using Arrhenius equation and the activation energy for adsorption of p-hydroxy benzoate at hematite-electrolyte interface is approximately 1.8 times more than that of phthalate-hematite system. The negative Gibbs free energy indicates that the adsorption of p-hydroxy benzoate and phthalate on hematite surfaces is favourable. The FTIR spectra of p-hydroxy benzoate and phthalate after adsorption on hematite surfaces were recorded for obtaining the bonding properties of adsorbates. The phenolic nu(CO) appears at approximately 1271 cm(-1) after adsorption of p-hydroxy benzoate on hematite surfaces, which shifted by 10 cm(-1) to higher frequency region. The phenolic group is not deprotonated and is not participating in the surface complexation. The shifting of the nu(as)(COO-) and nu(s)(COO-) bands and non-dissolution of hematite suggest that the p-hydroxy benzoate and phthalate form outer-sphere surface complex with hematite surfaces in the pH range of 5-7.  相似文献   

12.
The coagulation rate constant of submicron silica has been measured as a function of solution pH, salt concentration and hydroxypropyl cellulose (HPC) polymer concentration. Results show that the colloidal stability of silica is dominated by the cation concentration in the presence of salt in the pH range 3–9.5. The stability increases as cation concentration decreases. At low salt concentration and a minimum colloid stability was found in the intermediate pH range 4–8. These results show that differences in the literature values of the critical coagulation constant by relative light-scattering experiments can be explained by the use of the coagulation rate constant analysis. When HPC polymer was present in the solution, the colloid stability of the silica increased. The adsorption of polymer stabilizes the silica suspensions, both at low pH near the isoelectric point and at high ionic strength where it coagulates without the polymer. A monolayer coverage was necessary to provide steric stabilization. At 10–3 M KCl a smaller equilibrium concentration of HPC in solution is needed to give monolayer coverage and steric stabilization than at 1 M KCl and pH 4.2.  相似文献   

13.
Ionic strength dependence of interaction and friction forces between hydrophilic alpha-alumina particles and c-sapphire surfaces (0001) were investigated under basic pH conditions using the colloidal probe method. The compression of the double layer could be seen from force-distance curves as the ionic strength of the solution increased. The forces were repulsive at all ionic strengths measured, even though the interaction distance changed drastically. No jump to contact occurred. The interaction distance decreased from about 20 nm in 10(-3) M KCl solution to about 7 nm in the 1 M KCl case. The lubricating effect of hydrated cations on the lateral friction force was demonstrated at high electrolyte concentrations. This was attributed to more hydrated cations being present in the solution. The friction behavior was closely related to the short-range repulsive forces between the alpha-alumina surfaces at pH 11.  相似文献   

14.
Using commercial activated carbon as an adsorbent, the kinetics of adsorption of zinc from multicomponent ionic systems having cadmium and mercury has been studied and reported. The variables investigated have been the chemical nature, ionic strength, and pH of the adsorptive (Zn2+) solution. The adsorption of Zn2+ is speeded up by the presence of Cd2+ and Hg2+ ions provided that the concentration of these two ions is high as compared to the concentration of Zn2+. When the ionic strength of the solution in relative terms is high (i.e., > 3 x 10(-4) M), however, the adsorption of Zn2+ decelerates. Also, the adsorption process is greatly accelerated at pH 12, whereas at pH 2 it does not occur at all.  相似文献   

15.
Adsorption of tetracycline, one of the most widely used antibiotics, onto goethite was studied as a function of pH, metal cations, and humic acid (HA) over a pH range 3-10. Five background electrolyte cations (Li(+), Na(+), K(+), Ca(2+), and Mg(2+)) with a concentration of 0.01 M showed little effect on the tetracycline adsorption at the studied pH range. While the divalent heavy metal cation, Cu(2+), could significantly enhance the adsorption and higher concentration of Cu(2+), stronger adsorption was found. The results indicated that different adsorption mechanisms might be involved for the two types of cations. Background electrolyte cations hardly interfere with the interaction between tetracycline and goethite surfaces because they only form weak outer-sphere surface complexes. On the contrary, Cu(2+) could enhance the adsorption via acting as a bridge ion to form goethite-Cu(2+)-tetracycline surface complex because Cu(2+) could form strong and specific inner-sphere surface complexes. HA showed different effect on the tetracycline sorption under different pH condition. The presence of HA increased tetracycline sorption dramatically under acidic condition. Results indicated that heavy metal cations and soil organic matters have great effects on the tetracycline mobility in the soil environment and eventually affect its exposure concentration and toxicity to organisms.  相似文献   

16.
A study of competitive adsorption of Ca(2+) and Zn(II) ions at the monodispersed SiO(2)/electrolyte solution interface is presented. Influence of ionic strength, pH, and presence of other ions on adsorption of Ca(2+) and Zn(II) in the mentioned system are investigated. zeta potential, surface charge density, adsorption density, pH(50%), and DeltapH(10-90%) parameters for different concentrations of carrying electrolyte and adsorbed ions are also presented. A high concentration of zinc ions shifts the adsorption edge of Ca(2+) ions adsorbed from solutions with a low initial concentration at the SiO(2)/NaClO(4) solution interface to the higher pH values. This effect disappears with a concentration increase of calcium ions. The presence of Ca(2+) ions in the system slightly affects the adsorption of zinc ions on SiO(2), shifting the adsorption edge toward lower pH values and thereby increasing the adsorption slope.  相似文献   

17.
An experimental investigation is presented for separation of pentachlorophenol (PCP) and methyl orange (MO) from an aqueous solution by use of cetyltrimethylammonium bromide (CTAB) as a regulator in the paper capillary permeation adsorption process (PCPA). The effects of pH, concentration of CTAB, and ionic strength on the separatability of the molecules were studied. The maximum separatability of nearly 100% PCP and MO was obtained in the optimum pH range 5–11 and 7–11, respectively. The ionic strength has an appreciable effect on separatability. The recovery of PCP and MO from paper by elution with acetone: isooctane solvent gradients was also studied. The selective separation of PCP and MO admixed in aqueous solution by a developed solvent elution technique was also reported. It was believed that PCP and MO were separated as their ion pairs with CTA cations by adsorption on the fiber surface.  相似文献   

18.
Sodium cations adsorb specifically on metal oxides at high ionic strengths. This results in a shift in the isoelectric point (IEP) to higher pH values. When the critical concentration of electrolyte is exceeded there is no IEP at all and the electrokinetic potential is positive even at very high pH values. The critical NaI concentration is rather insensitive to the nature of the metal oxide (but silica behaves differently), and this suggests that the specific adsorption is chiefly due to ion-ion and ion-solvent interaction in solution. The experimental results obtained with indium and niobium oxides (critical concentrations of about 0.35 mol dm(-3)) confirmed this trend.  相似文献   

19.
An influence of different functional groups of polymer, its molecular weight, polydispersity ratio (M(w)/M(n)) and presence of impurities on its adsorption in different pH values (3, 6 and 9) onto synthesized hematite (Fe(2)O(3)) was measured. A structure of adsorbed macromolecules of PMA and PEI was obtained according to S-F theory. Two polymers were used: polymethacrylic acid (PMA) of 6500 and 75,100 molecular weight as well as polyethyleneimine (PEI) 25,000 commercial and fractionated. Electrokinetic properties of the interface oxide-polymer solution (surface charge density and zeta potential) were also measured as well as adsorption layer thicknesses (with use of viscosimetric measurements). Obtained data show, that all above-mentioned factors do influence not only the adsorption process itself but also a surface charge, zeta potential and structure of adsorbed polymer layers on polymer/hematite interface.  相似文献   

20.
The adsorption of o-phthalic acid at the hematite/water interface was investigated experimentally using batch adsorption experiments and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy over a wide range of solution pH, surface loading, and ionic strength conditions. Molecular orbital calculations for several possible surface complexes were also performed to assign atomistic structures to the features observed in the ATR-FTIR spectra. The results of the batch adsorption experiments exhibit typical anionic characteristics with high adsorption at low pH and low adsorption at high pH. The adsorption of phthalic acid also exhibits a strong dependence on ionic strength, which suggests the presence of outer-sphere complexes. ATR-FTIR spectra provide evidence of three fully deprotonated phthalate surface complexes (an outer-sphere complex and two inner-sphere complexes) under variable chemical conditions. A fully deprotonated outer-sphere complex appears to dominate adsorption in the circumneutral pH region, while two fully deprotonated inner-sphere complexes that shift in relative importance with surface coverage increase in importance at low pH. Comparison of experimental and theoretical calculations suggests the two inner-sphere complexes are best described as a mononuclear bidentate (chelating) complex and a binuclear bidentate (bridging) complex. The mononuclear bidentate inner-sphere complex was favored at relatively low surface coverage. With increasing surface coverage, the relative contribution of the binuclear bidentate inner-sphere complex increased in importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号