首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polylactic acid (PLA) is a good candidate for the manufacture of polymeric biodegradable biomaterials. The inclusion of metallic particles and surfactants solves its mechanical limitations and improves its wettability, respectively. In this work, cetyltrimethylammonium bromide (CTAB) and magnesium particles have been incorporated into PLA films to evaluate the changes produced in the polymeric matrix cast on glass and silicone substrates. For this purpose, the surface of the films has been characterized by means of contact angle measurements and ToF-SIMS. Depth profiles and SEM images of the cross sections of the films have also been obtained to study their morphology. The results show that the CTAB in the polymer matrix with and without magnesium improves the wettability of the films, making them more suitable for cell adhesion. The higher the hydrophilicity, the higher the surfactant concentration. The depth profiles show, for the first time, that, depending on the surfactant concentration and the presence of Mg, there is a layer-like distribution near the surface where, in addition to the CTAB + PLA mixture, a surfactant exclusion zone can be seen. This new structure could be relevant in in vitro/in vivo situations when the degradation processes remove the film components in a sequential form.  相似文献   

2.
The wetting properties of a substrate can be changed by chemical reaction. Here, we studied simple materials with acid-base properties, by preparing poly(vinyl chloride) films containing lauric acid. These substrates constitute simple polymeric surfaces the wettability of which can be easily controlled by the acid-base equilibrium. The roughness of the material was then varied by adding Aerosil (hydrophobic fumed silica). We then studied the wettability of these materials toward aqueous buffer solutions between pH 2 and 12 from contact angle measurements. The variation of the contact angle of a droplet of buffer solution with the pH of the solution was described by a simple thermodynamic model requiring only two parameters. Thus, we could characterize the acid polymer by an effective surface acid dissociation constant the value of which was consistent with those obtained with a similar surface. We showed that the behavior of any substrate could be described even if the surface geometry was not well-known.  相似文献   

3.
Hydrophobicity, lubrication and anticorrosion properties of steel substrates have been obtained by a deposition of thin film (i.e. by mechanochemical treatment) at room conditions. Stearic acid and paraffin were chosen as reactive molecules. Different abrasive powders were selected to generate active sites on the treated surfaces for adsorption of the reactive molecules and then, the results were compared. The surfaces were analyzed by reflection-absorption infrared spectroscopy (RAIRS). The results emphasize that, a thick layer of mixed stearic acid/paraffin was deposited onto the metallic surface after the treatment. After hexane rinsing we could only detect a very thin layer of oriented stearic acid molecules chemically adsorbed onto the metallic surface and which engages strong interactions with it. Whereas, RAIRS only provides molecular analysis, the XPS technique was complementary for discriminating the different surfaces. It was possible to show differences in thickness as well as in coverage according to the size and shape of abrasive particles. Furthermore, we could conclude that deposit layer is not uniform. Defects were always present and were dependent on abrasive powders used. Then wettability was assessed as a way to test the homogeneity of thin films generated by the mechanochemical treatment. In agreement with theoretical data, receding contact angle was very dependent on the defects in the deposited film. If holes or aggregates were increased in the deposit layer, the receding contact angle was decreased while advancing contact angles and equilibrium contact angles remained constant. A very important point for technological applications was that the homogeneity of the deposited film was governed by abrasive powder involved in mechanochemical treatment and contact angle values were a direct measurement of the homogeneity of surfaces generated by mechanochemical treatment.  相似文献   

4.
Self-assembled monolayers of 3-mercapto-1H-1,2,4-triazole (MTA) was formed over a copper surface at various immersion periods. Fourier transform infrared spectroscopy and cyclic voltammetry were used to characterize the films. Atomic force microscopy and scanning electron microscopy were employed for the characterization of surface morphology. The wettability of the film was examined using contact angle measurements. The corrosion protection ability of the films was assessed in a chloride solution using electrochemical impedance spectroscopy and polarization measurements. The results of the study clearly ascertained the protection ability of self-assembled films of the MTA over copper. The theoretical studies also vouched for the experimental results.  相似文献   

5.
We investigated the correlation between surface wettability and internal structure of polyelectrolyte (PE)/PE and PE/inorganic multilayer films prepared by the spin self-assembly (SA) method. Spin self-assembled poly(allylamine hydrochloride) (PAH)/poly(sodium 4-styrenesulfonate) (PSS) multilayer films deposited from PE solutions of 10 mM show the distinct oscillation in contact angles with variation of the outermost PE layer, representing the saturated values in contact angles of individual PAH and PSS layers. These contact angles are also well consistent with the angles measured from respective PE layers (i.e., PAH and PSS) of the spin SA (PAH/CdS-COO-) and (CdS-NH3+/PSS) films carrying the flat interface between PE and inorganic CdS nanoparticle layers as confirmed by X-ray reflectivity. Furthermore, based on the contact angle of CdS-NH3+ layer in the ordered (CdS-NH3+/PSS) films, the change in surface wettability of CdS-NH3+ layers of two different spin SA (CdS-NH3+/poly(methacrylic acid) (PMAA)) multilayer films with ordered and disordered internal structure is also investigated. The films with ordered and disordered internal structure were fabricated by the pH adjustment of PMAA. The CdS-NH3+ layer in both CdS-NH3+/PSS and CdS-NH3+/PMAA multilayer films with the ordered internal structure has the contact angle of about 25 +/- 2 degrees irrespective of the PSS or PMAA sublayer. As a result, the same surface wettability of PE or inorganic layers, despite different sublayers, strongly indicates that the spin SA method in optimum condition allows the top surface to be completely covered with a low level ofinterdigitation with a sublayer at each deposition step, and this leads to the conclusion that physical and chemical characteristics of the sublayers have no significant influence on those of the outermost layer.  相似文献   

6.
借助沉积聚合辅助的“无模板”法在玻璃基片上制备出水杨酸掺杂的微/纳米结构的聚苯胺.实验发现,微/纳米结构的形貌及其浸润性依赖于掺杂剂与单体的摩尔比和沉积时间.当低分子量的聚苯胺微米球和纳米球共存时,其沉积的表面呈现出高的疏水性(接触角θ=148.0°),这主要来源于微/纳米共存的结构导致高的表面粗糙度,能捕获更多的空气所致.FTIR,紫外-可见光谱和X光射线衍射表征了微/纳米球的分子结构及其结晶性.  相似文献   

7.
The mesoporous hydroxyapatite films (MHFs) have been developed on glass slides by sol–gel dip-coating technology using cetyltrimethylammonium bromide (CTAB) as the structure-directing agent and the effects of pH value and calcination temperatures on the surface morphology and the mesostructure have been discussed. The phase composition, surface morphology, mesostructure and surface wettability were characterized by X-ray diffraction, scanning electron microscope, transmission electron microscope, N2 adsorption–desorption isotherms and water contact angle analyzer, respectively. The continuous thin films consisted of mesoporous hydroxyapatite particles (~50 nm) with mesopores (~2 nm) within the particles have been obtained after being prepared in the condition of concentration of CTAB 0.09 M, pH of sol 3.0, reaction temperature 60 °C and calcination temperature 550 °C. In vitro cell culture, the mesoporous films, which possessed favorable surface wettability resulting from the special pore structure, have exhibited a high degree of MC3T3-E1 cell attachment and spreading, suggesting a better bioactivity. Therefore, the MHFs can be expected to have potential application for decreasing the ion release of implant and improving the bioactivity as a coating on material surface.  相似文献   

8.
Dual function of self-cleaning and antireflection can be created in double-layered TiO2-SiO2 nanostructured films. The film were prepared by (1) layer-by-layer deposition of multilayered SiO2 nanoparticles with polydiallyldimethylammonium (PDDA) cations, (2) layer-by-layer deposition of multilayered titanate nanosheets with polications on PDDA/SiO2 multilayer films, and (3) burning out the polymer and converting titanate nanosheets into TiO2 by hearing at 500 degrees C. The as-prepared films, consisting of a porous SiO2 bottom layer and a dense TiO2 top layer, improved the transmittance of glass or quartz substrates, as demonstrated by transmission spectra collected at normal incidence. The photocatalytic properties of the films were studied by the change of the water contact angle together with the decay of the IR absorption of the hydrocarbon chain of octadecylphosphonic-acid-modified films under 2.6 mW cm-2 UV illumination. Both the antireflective and the photocatalytic properties of the films were dependent on the number of PDDA/nanosheet bilayers deposited. however, excellent surface wettability of the films for water was obtained, independent of the preparation conditions. The experimental findings are discussed in terms of the special structure of the double-layered nanostructured film.  相似文献   

9.
Nanocrystalline black cobalt electrically deposited onto a steel substrate from aqueous solution was investigated. The influence of electrolyte composition and operating parameters on the appearance and optical properties of the coat was studied. The deposition conditions that ensure the highest solar absorptance were optimized. The chemical composition of fabricated thin films before and after annealing at 400 °C was determined by energy dispersive X‐ray analysis (EDS) and XPS technique. The crystal structure analysis showed that the bulk composition of the films was mainly cobalt oxide. The surface analysis reveals that the topmost surface layers of the films are made of different cobalt compounds confirming the multivalence state of Co on the surface with an oxidation state of ≥ + 2. Scanning electron microscope (SEM) observation indicated that the surface morphology was changed from dendritic structure to lamellar at higher current density. The black cobalt film showed soft magnetic characteristicsand excellent optical properties to transform solar energy into thermal energy. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
The spontaneous reduction of Ag(+) ions in N,N-dimethylformamide (DMF) (in the absence of a protecting agent) leads to the homogeneous deposition of silver nanoparticles on clean glass surfaces in contact with the solution. The process of reduction and deposition can be performed at room temperature and in the dark, but the use of visible or UV radiation affects the reaction rate and the morphology of the deposited films. The deposition conditions can be tuned so that a homogeneous monolayer of silver nanoparticles is deposited on the whole surface. Copyright 2000 Academic Press.  相似文献   

11.
通过恒电流和恒电位方法,研究了不同温度下脲-氯化胆硷(氯仿)基或乙二醇-氯化胆硷(氯仿)基离子液体中氯化钴溶液在铜和钢阴极上的钴电化学沉积行为. 采用扫描电子显微镜和X射线衍射技术,考察了不同试验条件对钴电沉积行为及钴沉积层形貌的影响. 结果表明,当沉积电位达到-0.8 V和沉积电流密度达到-6.0 A·m-2时,温度范围从30 °C到90 °C,添加0.05 mol·L-1的五氧化二磷,可以从脲基和乙二醇基离子液体中沉积得到光滑、发亮和良好结合力的金属光泽钴层. 电化学沉积钴的阴极电流效率达到98%.  相似文献   

12.
We demonstrate that the surface morphology and surface-wetting behavior of layer-by-layer (LbL) films can be controlled using different deposition methods. Multilayer films based upon hydrogen-bonding interactions between hydrophobically modified poly(ethylene oxide) (HM-PEO) and poly(acrylic acid) (PAA) have been prepared using the dip- and spin-assisted LbL methods. A three-dimensional surface structure in the dip-assisted multilayer films appeared above a critical number of layer pairs owing to the formation of micelles of HM-PEO in its aqueous dipping solution. In the case of spin-assisted HM-PEO/PAA multilayer films, no such surface morphology development was observed, regardless of the layer pair number, owing to the limited rearrangement and aggregation of HM-PEO micelles during spin deposition. The contrasting surface morphologies of the dip- and spin-assisted LbL films have a remarkable effect on the wetting behavior of water droplets. The water contact angle of the dip-assisted HM-PEO/PAA LbL films reaches a maximum at an intermediate layer pair number, coinciding with the critical number of layer pairs for surface morphology development, and then decreases rapidly as the surface structure is evolved and amplified. In contrast, spin-assisted HM-PEO/PAA LbL films yield a nearly constant water contact angle due to the surface chemical composition and roughness that is uniform independent of layer pair number. We also demonstrate that the multilayer samples prepared using both the dip- and spin-assisted LbL methods were easily peeled away from any type of substrate to yield free-standing films; spin-assisted LbL films appeared transparent, while dip-assisted LbL films were translucent.  相似文献   

13.
The zinc electrodeposition onto glassy-carbon electrode from the sulfate, chloride and acetate solutions is examined using cyclic voltammetry and chronoamperometry. The surface morphology of zinc deposited films is observed by scanning electron microscopy. The results show that all mechanisms of the zinc electrocrystallization on glassy-carbon electrode in the three solutions follow the same three-dimensional instantaneous nucleation and growth. The anions mainly affect the nucleation densities during zinc deposition, which results in different surface morphology. In the presence of acetate and chloride ions, the deposited zinc film tends to grow in a multi-layered pattern, while in sulfate solution the zinc deposition forms irregular grains.  相似文献   

14.
Different experimental methods including ellipsometry, zeta potential measurements, imbibition studies, and contact angle measurements were used to study the mechanism and influencing factors of wettability alteration of water-wet sandstone surface caused by CTAB (hexadecyl trimethyl ammonium bromide). Results show that when the concentration of CTAB reaches a certain level (below CMC), due to the electrostatic attraction between the positively charged head groups of CTAB and the negatively charged sandstone surface, the monolayer of CTAB is formed and hydrophobic chains of CTAB molecules are toward the aqueous phase, making the solid surface oil-wet. When the concentration of CTAB continues to increase (above CMC), due to the hydrophobic interaction, the compact bilayer of CTAB is formed and hydrophilic head groups of CTAB molecules are toward the aqueous phase, rendering the solid surface water-wet. The contact angles between the oil–water interface and the surface treated with CTAB increase with the increase of the concentration of NaCl and CaCl2. Compared to NaCl, the inorganic salt CaCl2 has a greater impact on the contact angle. In addition, the contact angles increase with the increase of temperature and decrease with the increase of pH value of the aqueous solution.  相似文献   

15.
Measurements of the advancing contact angle (theta) were carried out for aqueous solution of cetyltrimethylammonium bromide (CTAB) and p-(1,1,3,3-tetramethylbutyl) phenoxypoly(ethylene glycol), Triton X-100 (TX100) mixtures on polytetrafluoroethylene (PTFE). The obtained results indicate that the wettability of PTFE depends on the concentration and composition of the surfactants mixture. There is a minimum of the dependence between contact angle and composition of the mixtures for PTFE for each concentration at a monomer mole fraction of CTAB, alpha, equal 0.2, which points to the synergism in the wettability of PTFE. In contrast to Zisman, there is no linear dependence between costheta and the surface tension of aqueous solution of CTAB and TX100 mixtures for all studied systems, but a linear dependence exists between the adhesional tension and surface tension for PTFE in the whole concentration range, the slope of which is -1, that suggests that the surface excess of the surfactant concentration at the PTFE-solution interface is the same as that at the solution-air interface for a given bulk concentration. It was also found that the work of adhesion of aqueous solution of surfactants to PTFE surface did not depend on the type of surfactant and its concentration. It means that the interactions across PTFE-solution interface were constant for the systems studied, and they were largely Lifshitz-van de Waals type. On the basis of the surface tension of PTFE and the Young equation and thermodynamic analysis of the adhesion work of aqueous solution of surfactant to the polymer surface it was found that in the case of PTFE the changes of the contact angle as a function of the mixture of nonionic and cationic surfactants concentration resulted only from changes of the polar component of solution surface tension.  相似文献   

16.
利用聚苯乙烯重氮盐(PS-DAS),通过单组分逐层自组装,得到了厚度可控的超薄膜.采用紫外可见光谱,椭偏仪,原子力显微镜等对自组装膜的增长和表面形貌进行了表征,并对其交联前后的性质进行了研究.结果表明,利用逐层自组装步骤可以制备膜厚均匀增长的PS-DAS膜.组装过程中的吹干步骤对自组装膜的增长起重要作用.在加热条件下,超薄膜可以发生交联反应,得到疏水的表面。  相似文献   

17.
Fluorocarbon films using a monomer, 1H, 1H, 2H-perfluoro–1-dodecene were deposited in a continuous radio frequency (RF) glow discharge, the process was carried out in a parallel-plate RF discharge onto stainless steel reactor in order to produce coating with a water-and oil–repellent surface. Fourier-Transform Infrared spectroscopy (FT-IR) and X-ray Photoelectron Spectroscopy (XPS) revealed that the films obtained contain mainly perfluoromethylene (CF2) species. Film wettability was tested using water and hydrocarbon liquids for contact angle measurements, furthermore surface energy was also calculated. Oil-repellency was found to increase as the amount of CF2 species increases in the film structure. Film morphology was studied by Atomic Force Microscopy (AFM), films showing an usual morphology from that typical of Plasma Polymerised Fluorocarbon (PPFC) films. The combination of the low surface energy coating and the surface morphology produces materials which are both water and oil repellency.  相似文献   

18.
The investigations on the effect of the electrolysis conditions, including high speed electroplating, on the content, structure, morphology and some properties of electrodeposited In-Co alloys from citrate electrolytes are presented. It was shown that indium and cobalt could be successfully deposited from acid citrate electrolytes and deposition of alloys with indium content between 20 and 80 wt. % is possible. At high cobalt content, heterogeneous multiphase coatings with spatio-temporal structures are obtained. Spatio-temporal structures could be observed also during electrodeposition under intensive hydrodynamic flow and improved mass transport conditions at high current densities. The structures are obtained for the first time from silver- and cyanide-free non-alkaline stable electrolytes of a relatively simple composition.  相似文献   

19.
Both surface microstructure and low surface energy modification play a vital role in the preparation of superhydrophobic surfaces. In this study, a safe and simple electrochemical method was developed to fabricate superhydrophobic surfaces of Zr-based metallic glasses with high corrosion resistance. First, micro–nano composite structures were generated on the surface of Zr-based metallic glasses by electrochemical etching in NaCl solution. Next, stearic acid was used to decrease surface energy. The effects of electrochemical etching time on surface morphology and wettability were also investigated through scanning electron microscopy and contact angle measurements. Furthermore, the influence of micro–nano composite structures and roughness on the wettability of Zr-based metallic glasses was analysed on the basis of the Cassie–Baxter model. The water contact angle of the surface was 154.3° ± 2.2°, and the sliding angle was <5°, indicating good superhydrophobicity. Moreover, the potentiodynamic polarisation test and electrochemical impedance spectroscopy suggested excellent corrosion resistance performance, and the inhibition efficiency of the superhydrophobic surface reached 99.6%. Finally, the prepared superhydrophobic surface revealed excellent temperature-resistant and self-cleaning properties.  相似文献   

20.
报道了一种简便的调控聚合物材料表面结构及浸润性能的方法.利用流延成膜和纳米二氧化硅粒子的印迹修饰作用,制备出3种具有不同表面结构的聚氯乙烯(PVC)膜,膜的浸润性能表现为与水的接触角从103°的疏水性变为65°的亲水性,再改变至130°的疏水性.扫描电镜结果表明印迹修饰后的PVC膜具有纳米和微米尺寸的凹凸表面结构.通过对比实验证实了溶剂氯仿和NaOH溶液并不影响膜表面的疏水性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号