首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过热聚合法高温煅烧尿素得到g-C3N4纳米片,再以溶剂热法得到Bi OI/g-C3N4复合材料,采用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、红外光谱(FT-IR)等手段对Bi OI/g-C3N4纳米复合材料的微观结构和形貌进行了表征。通过滴涂法将Bi OI/g-C3N4复合材料修饰在玻碳电极(GCE)表面,构建了用于快速检测磺胺甲噁唑(SMX)的电化学传感平台,通过循环伏安(CV)和差分脉冲伏安(DPV)技术对SMX进行电化学分析,峰值电流随SMX浓度呈线性增加,线性范围为5~1000μmol/L,检出限为0.025μmol/L。采用加标回收法测定自来水样品中的SMX,加标回收率为90.0%~103.4%。  相似文献   

2.
以三聚氰胺为原料, 采用热聚合法合成了类石墨烯状二维片状氮化碳(g-C3N4)纳米材料; 通过电沉积和高电位氧化的方法制得氧化聚咪唑(PImox)/g-C3N4修饰电极(PImox/g-C3N4/GCE). 采用扫描电子显微镜(SEM)和X射线粉末衍射仪(XRD)对g-C3N4纳米材料进行了表征; 通过循环伏安法(CV)和差分脉冲伏安法(DPV)考察了尿酸(UA)、 黄嘌呤(XA)和次黄嘌呤(HX)在该电极上的电化学行为. 结果表明, UA, XA和HX的检测线性范围分别为2.0~216.0, 5.0~542.0和5.0~778.0 μmol/L; 检出限分别为0.17, 0.30和0.30 μmol/L. 将该修饰电极用于实际样品(血清和尿液)中UA, XA和HX的同时测定, 加标回收率为98.4%~105.2%.  相似文献   

3.
利用核壳型的CdSe@CdS量子点作为发光物质,并用壳聚糖(CS)、类石墨烯氮化碳(gC3N4)与CdSe@CdS量子点合成了CdSe@CdS/CS/gC3N4复合物,将该复合物修饰至玻碳电极(GCE)表面,将适配体(Apt)的互补DNA链(cDNA)通过化学反应连接到量子点上,Apt与cDNA发生杂交反应而被修饰至电极表面。将辣根过氧化物酶(HRP)固定到该修饰电极表面,构建了检测卡那霉素(Kana)的电化学发光(ECL)适配体传感器。通过生物催化沉淀(BCP)方法实现Kana的检测,溶液中无Kana时,在H2O2的存在下,修饰在电极上的HRP可以催化氧化4-氯-1-萘酚(4-CN),在电极表面产生不导电的苯并-4-氯己二烯酮沉淀,导致电化学发光信号明显降低。溶液中存在Kana时,Kana会与Apt特异性结合,部分dsDNA解旋,导致部分HRP从电极表面脱落,BCP反应减弱,导致ECL信号增强,实现目标物质的特异性检测。计算适配体传感器在Kana溶液中的...  相似文献   

4.
建立了基于镍修饰的碳纤维电化学传感器快速检测恩诺沙星的方法。将碳纤维(CNF)滴涂于玻碳电极(GCE)表面,采用循环伏安法(CV)将NiO纳米粒子沉积于CNF表面,制得NiO/CNF/GCE修饰电极,采用扫描电镜(SEM)和能谱仪(EDS)对修饰材料的形貌和元素进行表征,并将不同修饰电极放在磷酸缓冲液(PBS)中进行CV表征。对传感器制备和测定过程中的影响因素、CNF的滴涂量、缓冲液pH和Ni(NO32的电聚合圈数进行优化。采用差分脉冲伏安法(DPV)考察该电化学传感器对恩诺沙星的电化学行为。结果表明,制备的NiO/CNF/GCE电化学传感器在CNF滴涂用量为8μL,基质PBS溶液pH 6.0,Ni(NO32电聚合圈数为12圈时电极灵敏度最高,对恩诺沙星有较高的电化学响应,在0.5~80μmol/L浓度范围内与电流的变化值呈良好的线性关系,线性方程为Ip=0.0729c+0.4015(R2=0.995),方法检出限为0.17μmol/L,实际样品平均回...  相似文献   

5.
为提高石墨相氮化碳(g-C3N4)对可见光的利用率及光催化效率,采用热聚合与直接负载等方法,将g-C3N4负载于蒙脱石表面,制备了g-C3N4/蒙脱石复合光催化材料,其结构经SEM, FT-IR及XRD表征。以罗丹明B(RhB)为目标污染物,研究了不同负载量g-C3N4/蒙脱石复合光催化剂的可见光催化性能。并分别以对苯醌、碘化钾和异丙醇为自由基捕获剂,研究了复合材料的光催化机理。结果表明:当g-C3N4的质量分数为83%(CN/M-83%)时,RhB经可见光照射1 h后,降解率达到99.2%。光催化速率常数为纯g-C3N4光催化速率常数的3.2倍。  相似文献   

6.
以三聚氰胺为前驱体,采用两步热聚合法,制备了一系列石墨相氮化碳(g-C3N4)基光催化复合材料。通过X-射线衍射光谱(XRD)、扫描电子显微镜(SEM)、N2吸附、光致荧光光谱(PL)、傅里叶变换红外光谱(FT-IR)和电化学阻抗谱(EIS)等表征了其结构与光电特性。结果发现,Ni-P共掺杂可以有效改善g-C3N4的可见光吸收性能,减小其电化学阻抗,抑制光生载流子的复合。以可见光条件下降解亚甲基蓝(MB)溶液为探针反应研究了Ni-P@g-C3N4复合材料的光催化降解性能。结果表明,照射120分钟1.5%Ni/P-CN复合材料对MB的降解率为61.7%,速率常数为0.00785 min-1,是纯g-C3N4的两倍。反应体系的主要活性物种为超氧自由基(·O2-)。经过简单处理催化剂可重复使用3次以上且活性保持稳定。  相似文献   

7.
兼具高光学质量和电化学性能的薄膜光电极难以制备, 限制了光电催化氧化技术在水处理中的的应用. 本文采用原位煅烧法制备了负载在氧化铟锡(ITO)玻璃上的石墨相氮化碳(g-C3N4)薄膜电极, 并通过掺杂K+提高其光电催化氧化性能; 对电极进行了表征, 研究了其光电催化氧化降解水中双氯芬酸钠(DCF)的效率及降解路径. 结果表明, 原位煅烧法能制备出高质量的K+/g-C3N4薄膜光电极, K+的掺杂并未明显改变电极上g-C3N4的晶型、 价态和多孔形貌, 但可以提高ITO玻璃上g-C3N4的负载量, 增强电极对可见光的响应; K+的最佳掺杂浓度为0.002 mol/L, K+/g-C3N4薄膜电极光电催化氧化降解DCF的速率常数是纯g-C3N4薄膜电极的1.86倍; 当初始pH值为4, 电压为1 V, 光源强度为0.96 W/cm2, 反应2 h后水中DCF降解率达到70%. K+/g-C3N4薄膜电极光电催化氧化过程中, 光催化氧化和电化学氧化之间存在协同作用, 两者相互增强, 并提高了反应过程中光生 空穴(h+)和羟基自由基(·OH)浓度, 在这两种活性物质作用下, 水中DCF分别被h+氧化生成咔唑衍生物、 与·OH发生加成反应生成多羟基芳香化合物, 最后开环生成小分子物质.  相似文献   

8.
制备了硫化镉量子点-壳聚糖(CdS-CS)复合物修饰的玻碳电极(GCE),记作CdS-CS/GCE。以卡那霉素为模板分子,3-氨基苯硼酸(APBA)为功能单体,采用循环伏安法在CdS-CS/GCE表面电聚合得到了分子印迹聚合物(MIP)膜,所制备的传感器记作MIP/CdS-CS/GCE。卡那霉素可与传感器表面的MIP特异性结合,占据印迹孔穴,阻断共反应剂K2S2O8扩散到电极表面的通路,使电化学发光强度减弱。以传感器在空白溶液中的电化学发光强度(I0)与传感器在卡那霉素标准溶液中的电化学发光强度(I)的差值ΔI(ΔI=I0-I)作为响应信号,在优化的试验条件下,响应信号ΔI与卡那霉素浓度的对数值在1.0×10-11~1.0×10-7mol·L-1内呈线性关系,相关系数为0.999 0,检出限(3S/N)为5×10-12mol·L-1。按标准加入法对实际样品进行回收试验,...  相似文献   

9.
首先以尿素和葡萄糖为前驱体,通过热缩合方法制备了C/g-C3N4,然后利用溶剂热法合成C/g-C3N4/MoS2三元复合材料。通过不同的手段对其进行了表征,结果表明,与C/g-C3N4相比,该三元复合材料不仅具有更强的光吸收性能和更大的表面积,而且更有利于电子的转移。同时对其可见光催化降解甲基橙性能进行研究,结果发现,C/g-C3N4/MoS2-2.0%复合材料(含有质量分数为2.0%的MoS2)表现出最高的反应速率常数(0.0086 min-1),分别为g-C3N4/MoS2-2.0%(0.0015 min-1)和C/g-C3N4(0.0036min-1)的5.7倍和2.3倍。  相似文献   

10.
张亚  邢艳  焦玉荣 《分析试验室》2021,40(3):270-274
将银纳米粒子(AgNPs)电沉积在碳纳米纤维(CNFs)修饰玻碳电极表面制备纳米银/碳纳米纤维修饰玻碳电极(AgNPs/CNFs/GCE)。采用扫描电镜考察其表面形态,在K3[Fe(CN)6]-K4[Fe(CN)6]体系中用循环伏安法和电化学阻抗法研究AgNPs/CNFs/GCE的电化学行为。采用循环伏安法和方波伏安法研究多贝斯在AgNPs/CNFs/GCE上的电化学行为,结果表明,AgNPs/CNFs/GCE对多贝斯有显著的电催化作用。在方波伏安曲线上,多贝斯的还原峰电流与其浓度在1.0×10-9~6.0×10-6mol/L范围内成线性关系,检出限为0.50 nmol/L。AgNPs/CNFs/GCE的重现性和稳定性较好,可用于胶囊中多贝斯含量的测定。  相似文献   

11.
利用界面聚合法, 成功将聚苯胺(PANI)纳米棒生长在石墨型氮化碳(g-C3N4)片层上, 制备了PANI/g-C3N4复合光催化剂. 采用傅里叶变换红外(FTIR)光谱、X射线衍射(XRD)、扫描电镜(SEM)、紫外-可见(UV-Vis)光谱、热重分析(TGA)和电化学工作站表征手段考察样品的结构、形貌及性能, 以可见光催化降解亚甲基蓝为模型考察样品的可见光催化活性. 实验结果表明, 在复合材料中的g-C3N4能很好地分散成层状, 并在层间与PANI纳米棒形成复合物, 这种特殊的复合结构不仅利于片状g-C3N4对PANI链段运动的限制及对其降解产物的物理屏蔽, 从而可以提高复合材料的热稳定性, 而且具有优越的可见光催化性能.  相似文献   

12.
以NH4Cl为气体模板吹制双氰胺制备g-C3N4纳米片, 并将其负载于Pt/TiO2纳米管阵列(Pt/TiO2 NTs)上, 制备了一种新型的Z型g-C3N4/Pt/TiO2NTs复合电极材料. 通过扫描电子显微镜、 X射线衍射和X射线光电子能谱对该材料的结构进行了表征, 采用电化学和光电化学方法研究了材料的性能. 研究结果显示, 在可见光照射下, g-C3N4/Pt/TiO2 NTs复合材料具有高效的光电氧化甲醇的性能. 该复合材料的高性能主要归因于以下两点: (1) g-C3N4与Pt/TiO2NTs的结合有效扩展了其在可见光范围的吸收; (2) Z型电荷转移保留了具有强氧化能力的空穴和强还原能力的电子, 从而使光生中间体作用于电催化过程增强了甲醇氧化效率.  相似文献   

13.
首先以尿素和柠檬酸作为前驱体,通过热处理工艺合成N掺杂的g-C3N4(N-g-C3N4),然后利用化学还原的方法将Au沉积到N-g-C3N4表面,形成Au修饰的N掺杂的g-C3N4复合光催化材料(Au/N-g-C3N4)。通过XRD、XPS、TEM、UV-Vis和光电流测试对其进行了表征,与同等条件下制备的N-g-C3N4和g-C3N4相比,Au/N-g-C3N4具有更强的光吸收性能和更大的光电流。同时对材料的可见光产氢性能进行了研究,结果发现:当Au含量为1%时,复合材料呈现最佳的光催化产氢性能,其产氢速率为974μmol·g-1·h -1,为N-g-C3N4  相似文献   

14.
通过静电纺丝技术合成碳纳米纤维,以循环伏安法在此碳纤维上电聚合乙酸锌制备复合纳米材料作为一种新型的电化学增敏剂,用于修饰玻碳电极,开发了一种基于碳纤维和氧化锌复合材料的新型电化学传感器(ZnO/CNF/GCE)。使用循环伏安法、差分脉冲伏安法等进行电化学催化性能的研究,并优化实验条件。结果表明,与裸电极相比,在pH 5.5磷酸盐缓冲溶液中,ZnO/CNF/GCE修饰电极能使氧氟沙星的峰电流明显提升,线性范围1~200μmol/L,检测限为0.33μmol/L。该ZnO/CNF/GCE修饰电极已用于氧氟沙星滴耳液中氧氟沙星的含量测定。  相似文献   

15.
本文使用水热法制备了Ag-Co3O4@MWCNTs纳米复合材料,使用扫描电镜和能谱仪对材料进行了表征。将Ag-Co3O4@MWCNTs纳米复合材料与壳聚糖超声混合均匀,并修饰到玻碳电极(GCE)表面,得到Ag-Co3O4@MWCNTs/GCE电化学传感器。电化学测定结果表明,该修饰电极对多巴胺的电化学反应具有显著的催化作用。峰电流与多巴胺浓度在0.5~377.5μmol·L-1范围内具有良好的线性关系,检出限为0.16μmol·L-1(S/N=3)。该传感器具有线性范围宽、检出限低、灵敏度高等优点,可用于人体血清样品中多巴胺的含量分析。  相似文献   

16.
通过电聚合法制备了聚对氨基苯磺酸(PABSA)修饰玻碳电极(GCE),采用循环伏安法(CV)和差分脉冲伏安法(DPV)研究了盐酸吡哆辛(VB6)在该修饰电极上的电化学行为。 结果表明,VB6在该修饰电极上的氧化电流显著增加,为裸电极上的7.5倍。 在pH值3.06.5的醋酸缓冲溶液中,VB6在PABSA/GCE上的电极反应为吸附控制的一电子两质子的不可逆氧化反应。 在优化条件下,使用DPV对VB6进行了定量检测,线性范围为0.04100 μmol/L,检出限为0.01 μmol/L,是目前所报道的电化学方法测定VB6的最低检出限,相对平均偏差为3.1%(n=8)。 采用本方法对维生素B6片中的VB6进行检测,回收率为106%~108%。  相似文献   

17.
通过煅烧和静电自组装的方法制备了1T′ MoS2超薄纳米片和类石墨烯相氮化碳(g-C3N4)纳米片的复合材料. 该材料在光催化实验中展现出6.24 μmol?g?1?h?1的产氢速率, 优于贵金属铂修饰的g-C3N4纳米片的性能(4.64 μmol?g?1?h?1). 此外, 该复合材料在光催化降解有机染料甲基橙的实验中表现出0.19 min?1的催化速率, 而纯g-C3N4纳米片只有0.053 min?1的催化速率. 材料光催化性能的提升可归结于1T′MoS2 和g-C3N4之间的协同效应, 包括光吸收的增强以及因1T′MoS2优异电子导电性而得到的高效电荷分离.  相似文献   

18.
通过水热反应合成了Sb2WO6改性的g-C3N4复合材料(Sb2WO6 /g-C3N4). 通过X射线衍射(XRD)、 扫描电子显微镜(SEM)、 紫外-可见漫散射反射光谱(UV-Vis DRS)和光致发光光谱(PL)等表征了样品的性质. 结果表明, Sb2WO6在g-C3N4的表面上生长, 并且复合材料光吸收能力有一定的增强, 光生电子-空穴的重组率降低. 通过罗丹明B(RhB)的光降解评价了Sb2WO6/g-C3N4复合材料的光催化性能. 结果表明, 模拟日光下Sb2WO6质量分数为10%的Sb2WO6/g-C3N4复合材料在60 min内对RhB的降解率为99.3%, 高于纯g-C3N4和Sb2WO6. Sb2WO6/g-C3N4复合材料的这种高度增强的光催化活性主要归因于强的界面相互作用促进了光生电子-空穴分离和迁移. 添加自由基清除剂的实验结果表明, ·O2-和h+是光催化反应中的主要活性物质. Sb2WO6/g-C3N4复合材料在几个反应周期内表现出优异的稳定性. 根据实验结果提出了一种可能的Z型光催化机理.  相似文献   

19.
采用水热法将TiO2纳米片修饰在中空管状g-C3N4上制备了TiO2/g-C3N4(T-CN)复合催化剂。利用扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、紫外可见漫反射光谱(UV-Vis DRS)和光电流响应等对其形貌、结构和光物理性能进行了表征。结果表明,TiO2纳米片均匀地分散在中空管状g-C3N4表面,两者紧密结合形成异质结。TiO2与g-C3N4的质量比为20%时制得的T-CN-20复合催化剂在60 min内对U的去除率为85.64%,是纯相g-C3N4的6.7倍。在10倍高浓度阳离子共存条件下的去除率仍大于69.8%,且具有优良的结构稳定性。对光催化产物分析可知,T-CN将U还原为难溶的U(63.68%)以去除铀,可有效解决含铀核废水中的U污染问题。根据能带理论分...  相似文献   

20.
以Ho2O3为反应物,采用水热法制备了纳米磷酸钬(n-HoPO4),并利用场发射扫描电子显微镜(SEM)、能谱分析(EDS)对其进行形貌表征和元素组成分析.将n-HoPO4和血红蛋白(Hb)复合材料修饰于裸玻碳电极(GCE)表面构建生物传感器,实现了对H2O2的电化学检测.采用循环伏安(CV)和电化学交流阻抗(EIS)技术对修饰电极进行表征,结果表明,Hb/n-HoPO4/GCE对H2O2的还原具有良好的电化学催化效果;n-HoPO4具有良好的导电性和生物相容性,促进了Hb与工作电极间的直接电子转移.研究了不同pH值和电化学扫速对修饰电极响应电流的影响.在优化实验条件下,此生物传感器对H2O2在50 ~ 1000 μmol/L范围内表现出良好的线性关系,相关线性系数R=0.999,检出限为17 μmol/L(S/N=3).此生物传感器具有检测范围宽、稳定性和重现性好、抗干扰能力强等优点,可用于实际样品的检测.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号