首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 82 毫秒
1.
We have studied the catalytic activity of supported copper-containing catalysts based on ZSM-5, Al2O3, and SiO2 in oxidation of CO. We have established that the difference between the activities of systems with 1.8% copper content obtained from different precursors is determined by the different reducibilities of their active sites, the number of such sites, and the distribution of the metal ions. The fact that the activity is highest for 1.8% Cu-ZSM-5 obtained from copper acetate is due to the relatively higher number of associated Cu2+ cations in square planar coordination in a non-lattice oxygen environment, which have high reducibility, and the higher overall oxygen content Oads + OOH in the surface layer of the catalyst.  相似文献   

2.
Reducibility of Cu supported on Al2O3, zeolite Y and silicoaluminophosphate SAPO-5 has been investigated in dependence on the Cu content using a method combining conventional temperature programmed reduction (TPR) by hydrogen with reoxidation in N2O followed by a second the so-called surface-TPR (s-TPR). The method enables discrimination and a quantitative estimation of the Cu oxidation states +2, +1 and 0. The quantitative results show that the initial oxidation state of Cu after calcination in air at 400 °C, independent on the nature of the support, is predominantly +2. Cu2+ supported on Al2O3 is quantitatively reduced by hydrogen to metallic Cu0. Comparing the TPR of the samples calcined in air and that of samples additionally pre-treated in argon reveals that in zeolite Y and SAPO-5 Cu2+ cations are stabilized as weakly and strongly forms. In both systems, strongly stabilized Cu2+ ions are not auto-reduced by pre-treatment in argon at 650 °C, but are reduced in hydrogen to form Cu+. The weakly stabilized Cu2+ ions, in contrast, may be auto-reduced by pre-treatment in argon at 650 °C forming Cu+ but are reduced in hydrogen to metallic Cu0.  相似文献   

3.
The adsorption and activation of NO molecules on Cu-ZSM-5 catalysts with different Cu/Al and Si/Al ratios (from 0.05 to 1.4 and from 17 to 45, respectively) subjected to different pretreatment was studied by ultraviolet-visible diffuse reflectance (UV-Vis DR). It was found that the amount of chemisorbed NO and the catalyst activity in NO decomposition increased with an increase in the Cu/Al ratio to 0.35–0.40. The intensity of absorption bands at 18400 and 25600 cm−1 in the UV-Vis DR spectra increased symbatically. It was hypothesized that the adsorption of NO occurs at Cu+ ions localized in chain copper oxide structures with the formation of mono- and dinitrosyl Cu(I) complexes, and this process is accompanied by the Cu2+...Cu+ intervalence transfer band in the region of 18400 cm−1. The low-temperature activation of NO occurs through the conversion of the dinitrosyl Cu(I) complex into the π-radical anion (N2O2) stabilized at the Cu2+ ion of the chain structure, [Cu2+-cis-(N2O2)], by electron transfer from the Cu+ ion to the cis dimer (NO)2. This complex corresponds to the L → M charge transfer band in the region of 25600 cm−1. The subsequent destruction of the complex [Cu2+-cis-(N2O2)] at temperatures of 150–300°C leads to the release of N2O and the formation of the complex [Cu2+O], which further participates in the formation of the nitrite-nitrate complexes [Cu2+(NO2)], [Cu2+(NO)(NO2)], and [Cu2+(NO3)] and NO decomposition products.  相似文献   

4.
The complexation reactions between Ag+, Hg2+ and Pb2+ metal cations with aza-18-crown-6 (A18C6) were studied in dimethylsulfoxide (DMSO)–water (H2O) binary mixtures at different temperatures using the conductometric method. The conductance data show that the stoichiometry of the complexes in most cases is 1:1(ML), but in some cases 1:2 (ML2) complexes are formed in solutions. A non-linear behaviour was observed for the variation of log K f of the complexes vs. the composition of the binary mixed solvents. Selectivity of A18C6 for Ag+, Hg2+ and Pb2+ cations is sensitive to the solvent composition and in some cases and in certain compositions of the mixed solvent systems, the selectivity order is changed. The values of thermodynamic parameters (ΔH co, ΔS co) for formation of A18C6–Ag+, A18C6–Hg2+ and A18C6–Pb2+ complexes in DMSO–H2O binary systems were obtained from temperature dependence of stability constants and the results show that the thermodynamics of complexation reactions is affected by the nature and composition of the mixed solvents.  相似文献   

5.
HDS catalysts were prepared by loading H3PMo12O40 or H4PMo11V1O40 polyoxometallates on TiO2 (0.5 and 1.0 mmol (Mo+V)). Activity of the catalysts was tested in the HDS of thiophene. The activity of catalysts of low concentration was 2–3 times higher than the activity of those of high concentration. Temperature programmed reduction (TPR) and IR spectroscopy were used to determine the properties of the catalyst. TPR measurements proved that vanadium promotes and stabilizes HDS activity due to an increase in the Mo5+/Mo4+ ratio.  相似文献   

6.
Copper (II) complex of 2,4-dimethyl-1,5,9,12-tetraazacyclopentadeca-1,4-diene, [Me2(15)dieneN4] was synthesized and used in the fabrication of Cu2+ – selective ISE membrane in PVC matrix. The membrane having Cu(II) macrocyclic complex as electroactive material along with sodium tetraphenyl borate (NaTPB) as anion discriminator. Dibutyl phthalate (DBP) as plasticizer in poly(vinyl chloride) (PVC) matrix was prepared for the determination of Cu2+. The best performance was observed by the membrane having Cu(II) complex–PVC–NaTPB–DBP with composition 1:5:1:3. The sensor worked well over a concentration range 1.12 × 10−6 M–1.0 × 10−1 M between pH 2.1–6.2 and a fast response time 10±2 s and a lifetime of 6 months. Their performance in partially non-aqueous medium was found satisfactory. Electrodes exhibited excellent selectivity for Cu2+ ion over other mono-, di-, trivalent cations. It can also be used as indicator electrode in the potentiometric titration of Cu2+ against EDTA as well as in the determination of Cu2+ in real samples.  相似文献   

7.
Fe3+-doped TiO2 composite nanoparticles with different doping amounts were successfully synthesized using sol-gel method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and ultravioletvisible spectroscopy (UV-Vis) diffuse reflectance spectra (DRS). The photocatalytic degradation of methylene blue was used as a model reaction to evaluate the photocatalytic activity of Fe3+/TiO2 nanoparticles under visible light irradiation. The influence of doping amount of Fe3+ (ω: 0.00%–3.00%) on photocatalytic activities of TiO2 was investigated. Results show that the size of Fe3+/TiO2 particles decreases with the increase of the amount of Fe3+ and their absorption spectra are broaden and absorption intensities are also increased. Doping Fe3+ can control the conversion of TiO2 from anatase to rutile. The doping amount of Fe3+ remarkably affects the activity of the catalyst, and the optimum efficiency occurs at about the doping amount of 0.3%. The appropriate doping of Fe3+ can markedly increase the catalytic activity of TiO2 under visible light irradiation. __________ Translated from Journal of Northwest Normal University (Natural Science), 2006, 42(6): 55–56 [译自: 西北师范大学学报(自然科学版)]  相似文献   

8.
Using experimental potential values for a vitreous carbon electrode in contact with the RbCu4Cl3I2 solid electrolyte, the concentration of Cu2+ ions in the electrolyte was determined. At 0.5 V, the concentration of Cu2+ was 1.25×1018 cm–3. The estimated values of the Cu2+ ion concentration in RbCu4Cl3I2 (0.8%) and the potential of the vitreous carbon electrode after electrochemical decomposition of RbCu4Cl3I2 (0.606 V) correspond to experimental values of 2% and 0.58 V, respectively. This demonstrates the adequacy of the model describing the electrode potential of Cu2+ as a function of the concentration in RbCu4Cl3I2. When the C/RbCu4Cl3I2 interface was polarized, the diffusion coefficient of Cu2+ was 1.5×10–8 cms–1. Investigations of the interface between the copper electrode and RbCu4Cl3I2 were carried out by galvanostatic and potentiostatic methods. A 1-μm layer of cuprous oxide, Cu2O, was discovered on the interface of the copper electrode with RbCu4Cl3I2. This layer blocks the course of the electrochemical reaction Cu0–e⇌Cu+ with participation of copper metal. The copper electrode behaves as an inert redox electrode at low overvoltages. In this case, at the Cu2O/RbCu4Cl3I2 interface an electrochemical reaction with Cu2+ ion participation, Cu+–e⇌Cu2+, takes place. The results suggest that the reaction rate is limited by slowing the Cu2+ diffusion in RbCu4Cl3I2. The initial Cu2+ ion concentration in the electrolyte near this interface is about 1.4×1017 cm–3. The exchange current density is about (4±2)×10–6 A cm–2. At potentials ϕ>8–10 mV, an electrical breakdown of the Cu2O layer takes place, allowing copper metal to ionize to Cu+. We suggest that at 10 mV<ϕ<100 mV the rate of this reaction is limited by the formation and growth of copper nuclei and at ϕ>120 mV the reaction rate is limited by charge transfer. Electronic Publication  相似文献   

9.
Four new complexes of 2,3,4-trimethoxybenzoic acid anion with manganese(II), cobalt(II), nickel(II) and copper(II) cations were synthesized, analysed and characterized by standard chemical and physical methods. 2,3,4-Trimethoxybenzoates of Mn(II), Co(II), Ni(II) and Cu(II) are polycrystalline compounds with colours typical for M(II) ions. The carboxylate group in the anhydrous complexes of Mn(II), Co(II) and Ni(II) is monodentate and in that of Cu(II) monohydrate is bidentate bridging one. The anhydrous complexes of Mn(II), Co(II) and Ni(II) heated in air to 1273 K are stable up to 505–517 K. Next in the range of 505–1205 K they decompose to the following oxides: Mn3O4, CoO, NiO. The complex of Cu(II) is stable up to 390 K, and next in the range of 390–443 K it loses one molecule of water. The final product of its decomposition is CuO. The solubility in water at 293 K is of the order of 10–3 mol dm–3 for the Mn(II) complex and 10–4 mol dm–3 for Co(II), Ni(II) and Cu(II) complexes. The magnetic moment values of Mn2+, Co2+, Ni2+ and Cu2+ ions in 2,3,4-trimethoxybenzoates experimentally determined in the range of 77–300 K change from 5.64–6.57 μB (for Mn2+), 4.73–5.17 μB (for Co2+), 3.26–3.35 μB (for Ni2+) and 0.27–1.42 μB (for Cu2+). 2,3,4-Trimethoxybenzoates of Mn(II), Co(II) and Ni(II) follow the Curie–Weiss law, whereas that of Cu(II) forms a dimer.  相似文献   

10.
The dissociation of [CuII(L)His]•2+ complexes [L=diethylenetriamine (dien) or 1,4,7-triazacyclononane (9-aneN3)] bears a strong resemblance to the previously reported behavior of [CuII(L)GGH]•2+ complexes. We have used low-energy collision-induced dissociation experiments and density functional theory (DFT) calculations at the B3LYP/6-31+G(d) level to study the macrocyclic effect of the auxiliary ligands on the formation of His•+ from prototypical [CuII(L)His]•2+ systems. DFT revealed that the relative energy barriers of the same electron-transfer (ET) dissociation pathways of [CuII(9-aneN3)His]•2+ and [CuII(dien)His]•2+ are very similar, with the ET reactions of [CuII(9-aneN3)His]•2+ leading to the generation of two distinct His•+ species; in contrast, the proton transfer (PT) dissociation pathways of [CuII(9-aneN3)His]•2+ and [CuII(dien)His]•2+ differ considerably. The PT reactions of [CuII(9-aneN3)His]•2+ are associated with substantially higher barriers (>13 kcal/mol) than those of [CuII(dien)His]•2+. Thus, the sterically encumbered auxiliary 9-aneN3 ligand facilitates ET reactions while moderating PT reactions, allowing the formation of hitherto nonobservable histidine radical cations.  相似文献   

11.
Thermal and structural properties of model silicate-phosphate glasses containing the different amounts of the glass network modifiers, i.e. Mg2+ and Ca2+ were studied. To explain the changes of the parameters characterizing the glass transition effect (Tg, Δcp) and the crystallization process (Tc, ΔH) depending on the cations modifiers additions, analysis of the bonds and chemical interactions of atoms in the structure of glasses was used. 31P MAS-NMR spectra of SiO2–P2O5–MgO(CaO)–K2O glasses show that the phosphate complexes are mono- and diphosphate. It has been found that increasing amounts of Mg2+ or Ca2+ cations in the structure of glasses causes the reduction of the degree of polymerization of the phosphate framework (Q1→Q0). The influence of increasing of modifiers in the structure of silicate- phosphate glasses on the number of non-bridging oxygens per SiO4 tetrahedron and density of glasses was presented.  相似文献   

12.
Two-line ferrihydrite (2L-FH) is a metastable, heavily disordered, partially hydrated Fe(III) oxide. The catalyst prepared by heat treatment of 2L-FH promoted with chromium ions (∼9 at %) and copper ions (4–7 at %) is much more active in the water gas shift (WGS) reaction at low temperatures (<350°C) than the conventional Fe-containing catalysts. According to XAFS spectroscopy data, the copper cations in 2L-FH are in the Cu2+ state and are in a tetragonally distorted octahedral environment, while under the WGS conditions at <350°C, copper is in the reduced state, specifically, in the form of ultrafine (<2 nm) Cu0 particles. It is due to these particles that the catalyst is very active below 350°C. Above 400°C, the Cu0 particles are deactivated under the reaction conditions and the catalytic activity is only due to iron active sites, whose number is proportional to the specific surface area of the catalyst. The specific activity of the catalyst at these temperatures is close to the activity of the conventional (hematite-based) WGS catalysts. The high activity of the 2L-FH-based catalyst at <350°C makes it possible to reduce the starting temperature of the adiabatic high-temperature WGS reactor.  相似文献   

13.
Cu2+ ions supported on SiO2 (Cm2+ /SiO2) prepared by an ion-exchange method are reduced to Cu+ when Cu2+/SiO2 samples are evacuated at temperatures higher than 573 K Reduced Cu2+ ions on SiO2 (Cu+/SiO2 catalyst) decomposes NO molecules photocatalytically and stoichiometrically into N2 and O2 at 275 K. The physicochemical and photochemical properties of copper ions anchored onto SiO2 have been investigated by means of ESR and dynamic photoluminescence spectroscopies, as well as the analysis of photoreaction products. These results indicate that the excited state of the copper ions (Cu+ species) plays a significant role in the photocatalytic decomposition of NO molecules and the photoreaction involves an electron transfer from the excited state of the Cu+ ion into an anti-bonding π orbital of NO molecule within the lifetime of its excited state. Thus, the present results obtained with the Cu+/SiO2 catalysts imply the possibility of their utilization as a potentially promising type of photocatalysts in gas-solid systems.  相似文献   

14.
Combustion of dilute propane (0.9 mol%) over Mn-doped ZrO2 catalysts prepared using different precipitating agents (viz. TMAOH, TEAOH, TPAOH, TBAOH and NH4OH), having different Mn/Zr ratios (0.05—0.67) and calcined at different temperatures (500—800°C), has been thoroughly investigated at different temperatures (300—500°C) and space velocities (25,000–100,000 cm3 g−1 h−1) for controlling propane emissions from LPG-fuelled vehicles. Mn-doped ZrO2 catalyst shows high propane combustion activity, particularly when its ZrO2 is in the cubic form, when its Mn/Zr ratio is close to 0.2 and when it is prepared using TMAOH as a precipitating agent and calcined at 500—600°C. Pulse reaction of propane in the absence of free-O2 over Mn-doped ZrO2 (cubic) and Mn-impregnated ZrO2 (monoclinic) catalysts has also been investigated for studying the relative reactivity and mobility of the lattice oxygen of the two catalysts. Both reactivity and mobility of the lattice oxygen of Mn-doped ZrO2 are found to be much higher than that of Mnimpregnated ZrO2. Propane combustion over Mn-doped ZrO2 catalyst involves a redox mechanism  相似文献   

15.
In this study, a very simple spectrophotometric method for the simultaneous determination of citric and ascorbic acid based on the reaction of these acids with a copper(II)-ammonia complex is presented. The Cu2+-NH3 complex (with λmax = 600 nm) was decomposed by citrate ion and formed a Cu2+-citrate complex (with λmax = 740 nm). On the other hand, during the reaction of ascorbic acid with copper(II)-ammonia complex, ascorbic acid is oxidized and the copper(II)-ammonia complex is reduced to the copper(I)-ammonia complex and the absorbance decreases to 600 nm. Although there is a spectral overlap between the absorbance spectra of complexes Cu2+-NH3 and Cu2+-citrate, they have been simultaneously determined using an artificial neural network (ANN). The absorbances at 600 and 740 nm were used as the input layer. The ANN architectures were different for citric and ascorbic acid. The output of the citric acid ANN architecture was used as an input node for the ascorbic acid ANN architecture. This modification improves the capability of the ascorbic acid ANN model for the prediction of ascorbic acid concentrations. The dynamic ranges for citric and ascorbic acid were 1.0–125.0 and 1.0–35.0 mM, respectively. Finally, the proposed method was successfully applied to the determination of citric and ascorbic acids in vitamin C tablets and some powdered drink mixes. The text was submitted by the authors in English.  相似文献   

16.
The selective liquid–liquid extraction of various transition metal cations from the aqueous phase to the organic phase was carried out using a 14-membered N2O2S2-macrobicycle. Metal picrates such as Pb2+, Co2+, Zn2+, Ni2+,Cu2+ and Cd2+ were used in this extraction studies. It was found that the ligand showed moderate selectivity towards Pb2+ only among the other metals. The extraction constant (log K ex) was determined to be 13.8 for Pb2+ complex.  相似文献   

17.
A new perylene diimide (PDI) ligand (1) functionalized with a dipicolylethylenediamine (DPEN) moiety was synthesized and first used as a colorimetric and fluorometric dual-channel sensor to specifically detect the presence of Cu2+ over a wide range of other cations. The solution of 1 (10 μmol/L) upon addition of Cu2+ displayed distinguishing pink color compared with other cations including K+, Ni2+, Ca2+, Mn2+, Na+, Sr2+, Zn2+, Co2+, Cd2+, Mg2+, Cr3+, Ag+, and Ba2+, indicating the sensitivity and selectivity of 1 to Cu2+. Thus, the advantage of this assay is that naked-eye detection of Cu2+ becomes possible. Moreover, among these metal ions investigated, only Cu2+ quenched more than half fluorescent intensity of 1. The ESI-TOF spectrum of a mixture of 1 and CuCl2 in combination of the fluorescence titration spectra of 1 (10 μmol/L) upon addition of various amounts of Cu2+ revealed the formation of a 2:1 metal-ligand complex through the metal coordination interaction. Supported by the National Natural Science Foundation of China (Grant Nos. 20872101 & 20772086)  相似文献   

18.
The interaction between the radical anions C60 ·− and divalent d- and f-metal (Co, Fe, Ni, Mn, Eu, Cd) cations in DMF and acetonitrile-benzonitrile (AN-BN) mixture was studied. Black solid polycrystalline salts (C60 ·−)2{(M2+)(DMF) x } (x = 2.4–4, 1–6) containing the radical anions C60 ·− and metal(ii) cations solvated by DMF were prepared for the first time and their optical and magnetic properties were studied. The salts containing Co2+, Fe2+, and Ni2+ are characterized by antiferromagnetic interactions between the radical anions C60 ·−, which result in unusually large broadening of the EPR signal of C60 ·− upon lowering the temperature (from 5.55–12.6 mT at room temperature to 35–40 mT at 6 K for Co2+ and Ni2+). The salts containing Mn2+ and Eu2+ form diamagnetic dimers (C60 )2, which causes a jumpwise decrease in the magnetic moment of the complexes and disappearance of the EPR signal of C60 ·− in the temperature range 210–130 K. A feature of salt 6 is magnetic isolation of the radical anions C60 ·− due to the presence of diamagnetic cation Cd2+. The salts prepared are unstable in air and decompose in o-dichlorobenzene or AN. Reactions of C60 ·− with metal(ii) cations in AN-BN mixture result in decomposition products of the salts that contain neutral fullerene dimers and metals solvated by BN. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1909–1919, September, 2008.  相似文献   

19.
Two kinds of Cu/SiO2 catalysts were prepared by impregnation (IM) and ion-exchange (IE) methods, and tested in dehydrogenation of 2-butanol to methyl-ethyl-ketone. Some kinds of Cu2+ on the IE catalyst could not be reduced during the reaction, and it produced the butene. The copper oxide over the IM catalyst could be reduced during the reaction, and showed stable dehydrogenation activity for 2-butanol.  相似文献   

20.
Nanostructured copper-chromium oxides were prepared by the sol–gel process (SG) and were characterised by elemental analysis, thermal analysis (TG-DTA), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and by their activity in methane combustion. A comparative study was made with copper chromites commercial catalysts. The as-synthesised copper chromites sample exhibited higher specific surface area (248 m2 g−1) with respect to commercial solids (42 m2 g−1). The surface quantitative analysis evidenced a Cr6+ enrichment for the SG catalyst (Cr6+/Cr3+=0.56) with respect to commercial sample (0.39), while the ratio of copper species Cu2+/(Cu° + Cu+) was the same in both solids. Catalytic activity of SG solids in methane combustion was found to be comparable to that of Pt/Al2O3 and superior to that of commercial copper chromites tested under the same conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号