首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
石墨烯因独特的性质和潜在的应用在过去十年受到广泛重视。得益于石墨烯研究的繁荣,氧化石墨烯作为石墨烯的最常见的衍生物,近年来也获得广泛的研究。氧化石墨烯不仅可以通过高温退火还原得到光电性质都类似石墨烯的还原氧化石墨烯,而且因其结构中存在羧基、羰基和羟基等含氧基团,为石墨烯的性能调控提供了可能。常见的做法是通过引入外来原子比如氮原子来调控石墨烯的化学催化和光电性质。然而至今在氮掺杂石墨烯的研究中,氮的类型和所处化学环境对石墨烯电学性能的影响尚不清楚,而这会影响石墨烯后续的电学和催化应用。因此,合成特定类型的氮掺杂石墨烯并研究其对后续应用的影响是必要的。我们通过氧化石墨烯和邻芳基二胺的希夫碱缩合反应成功合成了吡嗪和吡啶氮掺杂石墨烯,研究了氮的类型对石墨烯电学性能的影响。吡嗪氮掺杂的石墨烯表现出弱的n型掺杂,而强吸电子的三氟甲基基团的引入,会让吡嗪氮掺杂的石墨烯由弱n型掺杂转变为明显的p型掺杂。当在吡嗪氮中同时引入吡啶氮时,石墨烯也表现为弱的p型掺杂。因此,石墨烯的性能可以通过控制吸电子基团和掺杂不同类型的氮来实现精细调控,从而为石墨烯的应用提供更多潜在可能。  相似文献   

2.
石墨烯的p型和n型掺杂调控对于石墨烯基功能器件的构筑至关重要.近年来,随着化学气相沉积(CVD)石墨烯技术的发展和广泛应用,CVD石墨烯掺杂技术及相应性能调控的研究也取得了极大进展.本文主要介绍了近几年来石墨烯,特别是CVD生长石墨烯掺杂研究的发展,讨论了金属电极接触、气体小分子吸附、氧化性及还原性极性分子吸附及晶格掺杂等多种石墨烯掺杂的方法,同时介绍了近期出现的对双层石墨烯能带调控以及制造石墨烯p-n结的研究,展望了石墨烯掺杂对于其功能器件研究的作用和发展前景.  相似文献   

3.
方楠  刘风  刘小瑞  廖瑞娴  缪灵  江建军 《化学学报》2012,70(21):2197-2207
大面积高质量石墨烯的制备及其改性对于纳电子器件相关研究有重要意义. 本文综述了近年来SiC衬底上石墨烯的相关研究, 包括外延法制备石墨烯、石墨烯与SiC衬底的作用机理、SiC衬底上石墨烯的改性方法以及外延石墨烯在器件等方面应用的重要进展. 目前, 外延法的工艺较为成熟且制备的较大面积石墨烯品质较好. SiC衬底和石墨烯之间的相互作用与衬底的表面原子种类、表面态、原子成键、钝化程度、电荷转移等密切相关, 其对石墨烯的电子能带、载流子种类产生明显影响. 实验与理论计算的结合可望加深对SiC衬底与石墨烯作用机理的理解, 并指导外延石墨烯改性及其在器件应用方面的进一步研究.  相似文献   

4.
C 60掺杂酞菁铜的光电特性及其SERS研究   总被引:2,自引:2,他引:0  
研究了C60 掺杂酞菁铜 (CuPc)双层光导体的光电特性 ,实验结果表明C60 掺杂后 ,可提高其光电性能。对C60 掺杂酞菁铜的表面增强拉曼光谱 (SERS)研究显示 ,C60 与酞菁铜之间生成了电荷转移较小、结构比较松散的分子间电荷转移复合物。  相似文献   

5.
近年来,石墨烯因其优异的电学和光学等特性,越来越受到人们的广泛关注。研究人员应用多种方法来合成石墨烯并且探讨其潜在的应用价值。本文首先简要介绍了石墨烯的结构及其基本的物理性质,并简单回顾了石墨烯的合成方法和表征手段。在此基础上,讨论了石墨烯/银复合薄膜在透明导电膜中的应用,并详细介绍了我们在该领域的研究成果。用化学气相沉积法(CVD)和多羟基法分别制备了双层石墨烯及银纳米线,成功合成了石墨烯/银复合薄膜,结果表明复合薄膜的方块电阻可降低至26 Ω·□-1,展示了其在光电器件上广泛的应用前景。  相似文献   

6.
无机铅卤钙钛矿CsPbX_3(X=Cl、Br、I或混合卤素)半导体纳米晶具有优异的光学和光电特性,是构筑照明、显示、光探测和光伏等多种光电器件颇有潜力的核心材料.这类材料在应用中存在的主要问题是如何协同调控或改善性能、提升稳定性并降低有毒铅的量. Pb~(2+)所在格位在决定其电子结构乃至光学和光电性能方面起着重要的作用.因此,最理想的方法是在Pb~(2+)的格位上有效且可控掺杂合适的金属离子.近年来,许多工作报道了CsPbX_3纳米晶的金属离子掺杂特性研究.为了更好地了解掺杂机制,未来开发出性能更优异的掺杂型钙钛矿材料,本文从掺杂离子、驱动力、掺杂策略及掺杂机理4个方面,分别总结了掺杂金属离子的种类及对光学和光电性能的影响,分析了掺杂剂中的阴离子和驱动力的作用,概述了主要的掺杂策略,系统阐述了后合成掺杂机理的核心思想,并指出了它们的不足之处,最后展望了今后在有效可控掺杂研究方面的一些挑战.  相似文献   

7.
氮掺杂石墨烯的制备及其在化学储能中的研究进展   总被引:1,自引:0,他引:1  
石墨烯独特的二维空间结构使其具有优异的导电性能、力学性能以及超大的比表面积,被认为是颇具潜力的新型储能材料,是目前储能研究的热点之一。 但是石墨烯易团聚、表面光滑且呈惰性而不利于与其它材料的复合,导致其应用受到限制。 石墨烯掺氮可改变其电子结构,增加表面的活性位,从而提高其应用于储能器件时的电化学性能。 本文综述了近几年氮掺杂石墨烯的制备方法以及其在超级电容器、锂离子电池、锂空电池以及锂硫电池等化学储能领域中的应用,指出了目前氮掺杂石墨烯在制备和储能应用中关注的核心问题,并对氮掺杂石墨烯的发展前景进行了展望。  相似文献   

8.
程熠  王坤  亓月  刘忠范 《物理化学学报》2022,38(2):2006046-0
石墨烯纤维材料是以石墨烯为主要结构基元沿某一特定方向组装而成或由石墨烯包覆纤维状基元形成的宏观一维材料。根据组成基元的不同可将石墨烯纤维材料分为石墨烯纤维和石墨烯包覆复合纤维。石墨烯纤维材料在一维方向上充分发挥了石墨烯高强度、高导电、高导热等特点,在智能纤维与织物、柔性储能器件、便携式电子器件等领域具有广阔的应用前景。随着化学气相沉积(Chemical Vapor Deposition,CVD)制备石墨烯薄膜技术的发展,CVD技术也逐渐应用于石墨烯纤维材料的制备。利用CVD法制备石墨烯纤维可避免传统纺丝工艺中繁琐的氧化石墨烯(Graphene Oxide,GO)还原过程。同时,通过CVD法直接将石墨烯沉积至纤维表面可以保证石墨烯与纤维基底之间强的粘附作用,提高复合纤维的稳定性,同时可实现对石墨烯质量的有效调控。本文综述了石墨烯纤维材料的CVD制备方法,石墨烯纤维材料优异的力学、电学、光学性质及其在智能传感、光电器件、柔性电极等领域的应用,并展望了CVD法制备石墨烯纤维材料未来的发展方向。  相似文献   

9.
石墨烯-量子点复合材料的制备与应用   总被引:1,自引:0,他引:1  
石墨烯因其独特的物理化学性质以及潜在的巨大应用价值引起了越来越多的研究兴趣,但其特殊的零带隙结构却限制了它在光电领域的应用。半导体量子点因其特有的量子尺寸效应而表现出迷人的光学性能,已成功应用于生物标记及电化学等领域,但电子-空穴对易复合湮灭,导致电子迁移率较低,限制了其在光电转换方面的应用。石墨烯独特的结构和电子特性使其成为优秀的导电支架,可从量子点中捕获并输运电子,实现了电子空穴对的有效分离。石墨烯-量子点复合材料不仅具有石墨烯的高电子传输性能,而且具备量子点特殊结构产生的量子尺寸效应和边缘效应,二者复合后在纳米器件和光电器件等领域极具应用潜力。本文详细总结了近年来石墨烯-量子点复合材料的制备方法,包括相转移法、静电复合、水热和溶剂热法以及电化学法和微波辅助法等,并简要介绍了相关应用领域的研究进展,以期为石墨烯基纳米复合材料的发展研究提供相关的参考与依据。  相似文献   

10.
深入研究各种光电化学反应过程的机理和反应动力学性质等对提升光电转换效率、发展绿色高效光伏能源器件具有重要意义.扫描电化学显微镜(SECM)是一种具有高时空分辨率的电化学扫描探针显微镜技术,不仅可以研究光电催化反应的机理和动力学性质,还可以通过光电流反馈模式进行组合成像,实现光电催化剂的性能评估和优选,近年来逐渐成为光电化学研究领域微区观测和反应动力学研究的重要技术手段.本综述系统介绍了SECM在光电化学研究中的应用,首先介绍用于光电化学研究的SECM的实验装置、工作原理和工作模式,然后对SECM在光合作用、光诱导电荷转移、电致化学发光、光解水、太阳能电池等光电化学研究领域的应用进行了详细介绍,最后展望了SECM在光电化学研究领域中的应用发展方向.  相似文献   

11.
随着小型化、可穿戴等特征的智能电子以及物联网传感设备的发展,新型纤维状柔性化、小型化电化学储能器件已成为重要的研究方向。同时,对纤维材料和柔性储能器件的性能提出了更高的要求,如可任意弯折、可拉伸、可折叠、高储能密度等。石墨烯纤维具有独特的结构、优异的导电性、良好机械性能和电化学性质,已证明了是一种极具前景、高性能的新型纤维状柔性储能材料。目前,研究者已开发了多种石墨烯基纤维微观结构的调控策略来进一步改进其性能。本文首先系统总结了石墨烯基纤维的制备方法和其性能提升的策略,然后详细讨论其在柔性化纤维状超级电容器、金属离子电池、热电发电机、太阳能电池和相变材料等储能领域中的最新应用进展。最后,对石墨烯基纤维在能源存储和转换领域中存在的挑战和机会进行了展望。  相似文献   

12.
彭景淞  程群峰 《物理化学学报》2022,38(5):2005006-19
石墨烯具有力学性能高、电导率优异等特点,然而单层石墨烯纳米片在组装成为宏观纳米复合材料的过程中,往往会出现片层团聚、界面作用弱、无规取向等问题,导致宏观石墨烯纳米复合材料性能远低于单片石墨烯。因此,如何将微观石墨烯纳米片层的高性能在宏观纳米复合材料中体现出来,是目前研究的热点和难点。本专论结合目前石墨烯纳米复合材料的研究现状,简要讨论了受天然鲍鱼壳的“砖-泥”结构的启发,仿生构筑高性能石墨烯纳米复合材料的最新研究进展。并对本课题组在仿鲍鱼壳石墨烯多功能纳米复合材料领域近年来的工作进行介绍,包括石墨烯纤维、薄膜和块材等多种宏观石墨烯纳米复合材料,系统总结构筑仿鲍鱼壳结构和反鲍鱼壳结构两种策略,在一定程度上解决了石墨烯在组装过程中的科学问题。同时,详细阐述了仿鲍鱼壳石墨烯多功能纳米复合材料的增强增韧机制和功能化策略,分析了今后研究工作中可能遇到的问题,并展望了未来的发展趋势。  相似文献   

13.
锂硫电池因其超高的理论能量密度以及硫资源丰富、成本低廉、无毒的优点,被认为是极具发展潜力与应用前景的新一代储能设备。然而,硫正极导电性差、体积膨胀以及穿梭效应严重等问题严重制约了其商业化应用。石墨烯具有高比表面积、高导电性和高柔韧性,并且易于进行表面化学修饰及组装,是一种理想的硫载体材料。本文主要综述了近年来三维石墨烯、表面化学修饰的石墨烯、石墨烯基复合材料以及石墨烯基柔性材料在锂硫电池正极中的研究现状,并展望了石墨烯作为硫载体在锂硫电池正极中的发展趋势。  相似文献   

14.
自2004年被成功制备后,石墨烯因其独特迷人的性质在近十几年来备受关注,同时也引发了二维纳米材料的研究热潮。单原子层厚度的二维结构赋予石墨烯非同寻常的光学、电子学、磁学及力学等性质,使得石墨烯在生物学、医学、化学、物理学和环境科学等多个领域展现出极大的应用潜力。制得注意的是,石墨烯在应用时通常需要进行功能化,调节其组成、大小、形状和结构等,以便于加工处理或满足不同的应用需求。石墨烯功能化方法多样,功能化产物也是种类繁多。然而,到目前为止,石墨烯功能化产物并没有系统全面的分类和精确的定义。因此,本文在系统总结现有石墨烯功能化研究的基础上,给出了石墨烯功能化产物的系统分类、各类的精确定义和相应的制备策略,并通过典型示例进行了详细地阐述。石墨烯功能化的产物统称为“功能化石墨烯材料”,分为两类:“功能化石墨烯”和“功能化石墨烯复合材料”。功能化石墨烯材料的制备可由“自上而下”和“自下而上”两种策略实现。制备策略的选择取决于应用需求。系统分类、精确命名和制备策略的归纳必将有助于功能化石墨烯材料的进一步发展。  相似文献   

15.
梁涛  王斌 《物理化学学报》2022,38(1):2011059-0
大批量石墨烯可控制备技术的逐渐成熟为实现其宏观组装和应用提供了基础。在众多的组装策略中,调节石墨烯层间的界面相互作用可以直接影响组装体的力学、电学、热学以及渗透等性质,具有重要的意义。石墨烯片层间以共价键连接的层间共价石墨烯材料以其可调的层间距、较强的层间作用力、丰富的功能化、以及可能的原子构型重排等特性,受到了广泛的关注和深入的研究。相比于其他非共价的键合手段,共价连接是一种更为牢固的枢纽。本文中我们将总结讨论层间共价石墨烯材料的构筑方法、性能以及应用。在构筑方法中,依据石墨烯本身的制备方法分为氧化还原法以及化学气相沉积法,而在氧化还原法中,以其宏观材料的形貌分为纸状和纤维状来讨论。接着,我们重点介绍了层间共价对其力学和电学性能的影响,并概述了此类宏观组装体材料的应用。层间共价石墨烯材料继承了石墨烯自身优异的特性,同时也具有宏观组装所赋予的性能,有望在多个领域得到广泛的应用。  相似文献   

16.
化学气相沉积(Chemical vapor deposition,CVD)法制备的石墨烯薄膜具有质量高、可控性好、可放大等优点,近年来受到了学术界和工业界的广泛关注。然而,近期研究结果表明,在高温CVD生长石墨烯的过程中,伴随着许多副反应,这些副反应会导致石墨烯薄膜表面沉积大量的无定形碳污染物,造成石墨烯薄膜的“本征污染”现象。同时,这些污染物的存在会导致转移后的石墨烯薄膜表面更脏,对石墨烯材料和器件的性能带来严重影响。这也是CVD石墨烯薄膜的性能一直无法媲美机械剥离石墨烯的重要原因之一。事实上,超洁净生长方法制备得到的超洁净石墨烯薄膜在诸多指标上都给出了目前文献报道的最好结果,代表着石墨烯薄膜材料制备技术的发展前沿。本文首先对CVD法制备石墨烯过程中表面污染物的形成机理进行分析,然后综述了超洁净石墨烯薄膜的制备方法,并列举了超洁净石墨烯薄膜的优异性质。最后,总结并展望了超洁净石墨烯未来可能的发展方向和规模化制备面临的机遇与挑战。  相似文献   

17.
适用于极低温环境的石墨烯超级电容具有广阔的应用前景。然而,由于片层间严重的堆叠团聚,目前石墨烯超级电容的低温储能性能并不理想。本文使用H2O2氧化刻蚀法制备了孔洞石墨烯(rHGO),将传统有机溶剂碳酸丙烯酯(PC)和低凝固点溶剂甲酸甲酯(MF)混合制备了混合溶剂有机电解液,组装获得了能够在-60 ℃极低温环境下稳定工作的超级电容。结果表明,该超级电容在-60 ℃下的比电容为106.2 F·g-1,相对于常温电容(150.5 F·g-1)的性能保持率高达70.6%,显著优于未做处理的石墨烯(52.3%)以及文献中的其他石墨烯材料。得益于孔洞化形貌中丰富的介孔和大孔所形成的离子传输通道和缩短的离子传输路径,孔洞石墨烯内的离子扩散阻抗远小于普通石墨烯,且受温度降低的影响更小。在-60 ℃的极低温条件下,该超级电容表现出26.9 Wh·kg-1的最大能量密度和18.7 kW·kg-1的最大功率密度,优于传统碳材料的低温超级电容性能。-60 ℃时在5 A·g-1电流密度下循环充放电10000次后电容保持率达89.1%,具有良好的低温循环稳定性。  相似文献   

18.
石墨烯导热研究进展   总被引:1,自引:0,他引:1  
石墨烯具有目前已知材料中最高的热导率,在电子器件、信息技术、国防军工等领域具有良好的应用前景。石墨烯导热的理论和实验研究具有重要意义,在最近十年间取得了长足的发展。本文综述了石墨烯本征热导率的研究进展及应用现状。首先介绍应用于石墨烯热导率测量的微纳尺度传热技术,包括拉曼光谱法、悬空热桥法和时域热反射法。然后展示了石墨烯热导率的理论研究成果,并总结了石墨烯本征热导率的影响因素。随后介绍石墨烯在导热材料中的应用,包括高导热石墨烯膜、石墨烯纤维及石墨烯在热界面材料中的应用。最后对石墨烯导热研究的成果进行总结,提出目前石墨烯热传导研究中存在的机遇与挑战,并展望未来可能的发展方向。  相似文献   

19.
The use of semiconductor photocatalysts (CdS, g-C3N4, TiO2, etc.) to generate hydrogen (H2) is a prospective strategy that can convert solar energy into hydrogen energy, thereby meeting future energy demands. Among the numerous photocatalysts, TiO2 has attracted significant attention because of its suitable reduction potential and excellent chemical stability. However, the photoexcited electrons and holes of TiO2 are easily quenched, leading to limited photocatalytic performance. Furthermore, graphene has been used as an effective electron cocatalyst in the accelerated transport of photoinduced electrons to enhance the H2-production performance of TiO2, owing to its excellent conductivity and high charge carrier mobility. For an efficient graphene-based photocatalyst, the rapid transfer of photogenerated electrons is extremely important along with an effectual interfacial H2-production reaction on the graphene surface. Therefore, it is necessary to further optimize the graphene microstructures (functionalized graphene) to improve the H2-production performance of graphene-based TiO2 photocatalysts. The introduction of H2-evolution active sites onto the graphene surface is an effective strategy for the functionalization of graphene. Compared with the noncovalent functionalization of graphene (such as loading Pt, MoSx, and CoSx on the graphene surface), its covalent functionalization can provide a strong interaction between graphene and organic molecules in the form of H2-evolution active sites that are produced by chemical reactions. In this study, carboxyl-functionalized graphene (rGO-COOH) was successfully modified via ring-opening and esterification reactions on the TiO2 surface by using an ultrasound-assisted self-assembly method to prepare a high-activity TiO2/rGO-COOH photocatalyst. The Fourier transform infrared (FTIR) spectra, X-ray photoelectron spectroscopy (XPS), and thermogravimetric (TG) curves revealed the successful covalent functionalization of GO to rGO-COOH by significantly enhanced ―COOH groups in FTIR and increased peak area of carboxyl groups in XPS. A series of characterizations, including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), XPS, and UV-Vis adsorption spectra, were performed to demonstrate the successful synthesis of TiO2/rGO-COOH photocatalysts. The experimental data for the hydrogen-evolution rate showed that the TiO2/rGO-COOH displayed an extremely high hydrogen-generation activity (254.2 μmol∙h−1∙g−1), which was 2.06- and 4.48-fold higher than those of TiO2/GO and TiO2, respectively. The enhanced photocatalytic activity of TiO2/rGO-COOH is ascribed to the carboxyl groups of carboxyl-functionalized graphene, which act as effective hydrogen-generation active sites and enrich hydrogen ions owing to their excellent nucleophilicity that facilitates the interfacial hydrogen production reaction of TiO2. This study provides novel insights into the development of high-activity graphene-supported photocatalysts in the hydrogen-generation field.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号