首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
A. Marsh  K. Altria 《Chromatographia》2006,64(5-6):327-333
This report describes the evaluation of a multiplexed, 96-capillary array instrument for analytical performance with a view to implementation for routine, high-throughput use. The need for higher throughput analytical capability for today’s busy pharmaceutical laboratory continues to rise. The use of multiplexed capillary electrophoresis is discussed, and the 96 multiplexed capillary array instrument with UV absorbance detection was used to perform high throughput pharmaceutical analysis. Pharmaceutical product assay, pK a and log P determinations were achieved. Reproducibility of relative migration time and relative peak area between capillaries was found to be acceptable. The multiplexed instrument offered equivalent performance for tablet assay to a conventional CE instrument. Using the multiplexed CE, pK a values approaching those of the literature values were obtained for a range of drugs. A microemulsion electrokinetic chromatography (MEEKC) method was successfully used without resulting in excessive operating current. The use of multiplexed CE for high throughput analysis has been shown to be a highly viable alternative to HPLC and other conventional analytical techniques.Presented at: CE in the Biotechnology & Pharmaceutical Industries: 7th Symposium on the Practical Applications for the Analysis of Proteins, Nucleotides and Small Molecules, Montreal, Canada, August 12–16, 2005.  相似文献   

2.
Parallel separations using CE on a multilane microchip with multiplexed LIF detection is demonstrated. The detection system was developed to simultaneously record data on all channels using an expanded laser beam for excitation, a camera lens to capture emission, and a CCD camera for detection. The detection system enables monitoring of each channel continuously and distinguishing individual lanes without significant crosstalk between adjacent lanes. Multiple analytes can be determined in parallel lanes within a single microchip in a single run, leading to increased sample throughput. The pKa determination of small molecule analytes is demonstrated with the multilane microchip.  相似文献   

3.
Gemma Garrido 《Talanta》2007,73(1):115-120
Methanol is the organic solvent closest to water and able to dissolve a huge amount of organic compounds. Therefore, it is a good candidate for pKa determination of drugs sparingly soluble in water or a basic drug presented as a salt which pKa is close to that of its counter-acid. In this work, the acidic dissociation constants in pure methanol of the most common acids used in pharmaceutical preparations (lactic, tartaric, fumaric, maleic and citric) were determined. In addition, the pKa values of the antipsychotic quetiapine presented as hemifumarate (Seroquel) and the very insoluble antiarrhythmic amiodarone were also determined by potentiometry. From these values, the aqueous pKa of these drugs were estimated by means of previously established equations. Estimated values are consistent with those from literature and show the interest of methanol for drug discovery pKa measurements.  相似文献   

4.
In this paper the validation of pKa determination in MDM-water mixtures is presented. The MDM-water mixture is a new multicomponent cosolvent mixture (consisting of equal volumes of methanol, dioxane and acetonitrile, as organic solvents) that dissolves a wide range of poorly water-soluble compounds. The cosolvent dissociation constants (psKa) of 50 chemically diverse compounds (acids, bases and ampholytes) were measured in 15-56 wt% MDM-water mixtures by potentiometric or spectrophotometric titration and the aqueous pKa values obtained by extrapolation. Three different extrapolation procedures were compared in order to choose the best extrapolation in MDM-water mixture using a sub-set of 30 water-soluble compounds. The extrapolated results are in good agreement with pKa values measured in aqueous medium. No significant difference was found among these extrapolation procedures thus the widely used Yasuda-Shedlovsky plot was proposed for MDM cosolvent also. Further we also present that the single point estimation based on measurement in 20%/v MDM-mixture using a general calibration equation may be suitable for rapid pKa determination in the early phase of drug research.  相似文献   

5.
Omeprazole is a potent anti-acid drug. Its absorption and mode of action are closely related to its prototropic behavior. In the present study, omeprazole samples from different sources and in different forms were studied spectrophotometrically to obtain pKa values. In the neutral to alkaline pH region, two consistent pKa values of 7.1 and 14.7 were obtained from various samples. The assignment of these pKa values was realized by comparison with the prototropic properties of N(1)-methylated omeprazole substituted on the nitrogen at the 1-position of the benzimidazole ring, which was found to have a pKa of 7.5. The omeprazole pKa of 14.7 is assigned to the dissociation of the hydrogen from the 1-position of the benzimidazole ring and the pKa of 7.1 is assigned to the dissociation from the protonated pyridine nitrogen of omeprazole. The results presented are at variance with those of earlier work.  相似文献   

6.
The difficulties in estimating uncertainty of pKa values determined in nonaqueous media are reviewed and two different uncertainty estimation approaches are presented and applied to the pKa values of the compounds on a previously established self-consistent spectrophotometric basicity scale in acetonitrile. One approach is based on the ISO GUM methodology (the “ISO GUM” approach) and involves careful analysis of the uncertainty sources and quantifying the respective uncertainty components. The second approach is based on the standard-deviation-like statistical parameter that has been used for characterization of the consistency of the scale (the “statistical” approach). It is demonstrated that the ISO GUM approach somewhat overestimates the uncertainty. The statistical approach is based on long-term within-laboratory statistical data and it is demonstrated that it underestimates the uncertainty. In particular it neglects the laboratory bias effects that are taken into account at least to some extent by the ISO GUM approach. Thus, together these two approaches allow to “bracket” the uncertainties of the pKa values on the scale. The uncertainties of the pKa values are defined in two different ways. Definition (a) includes the uncertainty of the pKa of the reference base (anchor base of the scale) pyridine. Definition (b) excludes it. It is demonstrated that both definitions have their virtues. Definition (a) leads to the uncertainty ranges of 0.12-0.22 and 0.12-0.14 pKa units at standard uncertainty level for different bases using the ISO GUM and statistical approach, respectively. Definition (b) leads to the uncertainty ranges of 0.04-0.19 and 0.02-0.08 pKa units, respectively. The uncertainty of the pKa of a given base is dependent on the quality of the measurements involved and on the distance from the reference base on the scale. The importance of the correlation between the pKa values of bases belonging to the same scale is stressed.  相似文献   

7.
Large volume stacking using the electroosmotic flow (EOF) pump (LVSEP) in capillary electrophoresis under a reverse potential is a convenient and straightforward approach for on-line concentration of dilute anionic sample solutions. LVSEP achieves automatic sample matrix removal and subsequent separation without intermediate polarity switching nor complicated instrumental setup. Since anionic analytes should move against the EOF in LVSEP, EOF needs to be suppressed. We extended the range of LVSEP up to pH 11 using various EOF suppression methods, such as dynamic coating by polymer pretreatment and permanent coating. Weakly acidic organic compounds (pKa<5.2), chlorinated phenols (pKa=7-9), and aromatic amino acids (pKa2∼9.3) were concentrated and separated. By hydrodynamically filling the whole capillary of 27 cm long with the sample solution, fast and reliable injection was achieved and sensitivity enhancement factors as large as 170 were readily obtained in less than 8 min.  相似文献   

8.
An accurate estimation of pKa values in methanol-water binary mixtures is very important for several separation techniques such as liquid chromatography and capillary electrophoresis that use these solvent mixtures. In this study, the pKa values of 11 polyphenolic acids have been determined in methanol-water binary mixtures (10%, 20% and 30% (v/v)) by potentiometry, liquid chromatography (LC) and LC-DAD methodology.The results show a similar trend for the pKa values of all the studied compounds, as they increase with increasing concentration of organic modifier, which allows a linear relationship between pKa values and mole fraction of methanol to be obtained. The pKa values obtained in aqueous medium have been compared with those given in the literature, and also with the values predicted by the SPARC on-line pKa calculator. The data obtained have been used to test the feasibility of an estimation of dissociation constants in a methanol-water medium from the relationship between pKa values and the organic cosolvent fraction in the mixtures.  相似文献   

9.
10.
The acid dissociation constant (pKa) of small, biological molecules is an important physical property used for investigating enzyme mechanisms and inhibitor design. For phosphorus-containing molecules, the 31P nuclear magnetic resonance (NMR) chemical shift is sensitive to the local chemical environment, particularly to changes in the electronic state of the molecule. Taking advantage of this property, we present a 31P NMR approach that uses inorganic phosphate buffer as an internal pH reference to determine the pKa values of the imide and second diphosphate of uridine-5′-diphosphate compounds, including the first reported values for UDP-GlcNAc and UDP-S-GlcNAc. New methods for using inorganic phosphate buffer as an internal pH reference, involving mathematical correction factors and careful control of the chemical shift reference sample, are illustrated. A comparison of the newly determined imide and diphosphate pKa values of UDP, UDP-GlcNAc, and UDP-S-GlcNAc with other nucleotide phosphate and thio-analogs reveals the significance of the monosaccharide and sulfur position on the pKa values.  相似文献   

11.
Determining the net charge and protonation states populated by a small molecule in an environment of interest or the cost of altering those protonation states upon transfer to another environment is a prerequisite for predicting its physicochemical and pharmaceutical properties. The environment of interest can be aqueous, an organic solvent, a protein binding site, or a lipid bilayer. Predicting the protonation state of a small molecule is essential to predicting its interactions with biological macromolecules using computational models. Incorrectly modeling the dominant protonation state, shifts in dominant protonation state, or the population of significant mixtures of protonation states can lead to large modeling errors that degrade the accuracy of physical modeling. Low accuracy hinders the use of physical modeling approaches for molecular design. For small molecules, the acid dissociation constant (pKa) is the primary quantity needed to determine the ionic states populated by a molecule in an aqueous solution at a given pH. As a part of SAMPL6 community challenge, we organized a blind pKa prediction component to assess the accuracy with which contemporary pKa prediction methods can predict this quantity, with the ultimate aim of assessing the expected impact on modeling errors this would induce. While a multitude of approaches for predicting pKa values currently exist, predicting the pKas of drug-like molecules can be difficult due to challenging properties such as multiple titratable sites, heterocycles, and tautomerization. For this challenge, we focused on set of 24 small molecules selected to resemble selective kinase inhibitors—an important class of therapeutics replete with titratable moieties. Using a Sirius T3 instrument that performs automated acid–base titrations, we used UV absorbance-based pKa measurements to construct a high-quality experimental reference dataset of macroscopic pKas for the evaluation of computational pKa prediction methodologies that was utilized in the SAMPL6 pKa challenge. For several compounds in which the microscopic protonation states associated with macroscopic pKas were ambiguous, we performed follow-up NMR experiments to disambiguate the microstates involved in the transition. This dataset provides a useful standard benchmark dataset for the evaluation of pKa prediction methodologies on kinase inhibitor-like compounds.  相似文献   

12.
Thermodynamic pKa values for benzimidazole and several substituted benzimidazoles were determined by CE. Electrophoretic mobilities of benzimidazoles were determined by CE at different pH levels and ionic strengths. The dependence of electrophoretic mobilities on pH was used to obtain pKa values at different ionic strengths. Extrapolations to zero ionic strength were used to determine the thermodynamic pKa values. Using this method the thermodynamic pKa values of 15 benzimidazoles were determined and found to range from 4.48 to 7.38. Results from the CE measurements were compared with spectrophotometric measurements which were evaluated at wavelengths where the highest absorbance difference for varying pH was recorded. The two analytical techniques were in good agreement.  相似文献   

13.
A rapid and universal capillary zone electrophoresis (CZE) method was developed to determine the dissociation constants (pK a) of the 20 standard proteogenic amino acids. Since some amino acids are poorly detected by UV, capacitively coupled contactless conductivity detection (C4D) was used as an additional detection mode. The C4D coupling proved to be very successful on a conventional CE-UV instrument, neither inducing supplementary analyses nor instrument modification. In order to reduce the analysis time for pK a determination, two strategies were applied: (i) a short-end injection to reduce the effective length, and (ii) a dynamic coating procedure to generate a large electroosmotic flow (EOF), even at pH values as low as 1.5. As a result, the analysis time per amino acid was less than 2 h, using 22 optimized buffers covering a pH range from 1.5 to 12.0 at a constant ionic strength of 50 mM. pK a values were calculated using an appropriate mathematical model describing the relationship between effective mobility and pH. The obtained pK a values were in accordance with the literature. Figure a UV (1) and C4D (2) detectors placed on-line on the CE capillary. b Curve of effective mobility as a function of pH for histidine  相似文献   

14.
In this study, pKa values were determined by using the dependence of the capacity factor on the pH of the mobile phase for four ionizable substances, namely, tenoxicam, piroxicam, meloxicam, and naproxen (I.S.). The effect of the mobile phase composition on the ionization constant was studied by measuring the pKa at different ACN concentrations, ranging from 30 to 40%. The adequate condition for the chromatographic determination of these compounds in pharmaceutical dosage forms was established based on the different retention behaviors of the species. An octadecylsilica Nucleosil C18 column (150×4.6 mm, 5 μm) was used for all the determinations. The chromatographic separation of oxicams was carried out using acetonitrile (ACN)/water at 35% v/v, containing 65 mM phosphoric acid and UV detection at a wavelength of 355 nm. The method developed was successfully applied to the simultaneous determination of these drug compounds in laboratory‐prepared mixtures and their commercial pharmaceutical dosage forms. Each analysis requires no longer than 12 min.  相似文献   

15.
A series of substituted azobenzene dyes was found to span a range of 8 pKa units in acetonitrile. The UV absorption spectra of the dyes are responsive to protonation, changing in both absorption maximum and intensity. These characteristics make the dyes useful as indicators for the measurement of pKa values of neutral organic bases that absorb in the visible region of the spectrum.  相似文献   

16.
The design of boronic acid sensors for photometric detection of carbohydrates has relied on exploiting differences in the thermodynamic stability of complex formation for molecular recognition. Herein, we introduce a direct method for analysis of sugar alcohols using 3-nitrophenylboronic acid (NPBA) as an electrokinetic probe in capillary electrophoresis (CE). Dynamic complexation of neutral polyols by NPBA during electromigration allows for their simultaneous resolution and UV detection based on formation of an anionic ternary boronate ester complex in phosphate buffer. Unlike conventional boronic acid sensors, thermodynamic and electrokinetic processes in CE allow for improved selectivity for the resolution of sugar alcohol stereoisomers having different vicinal polyol chain lengths even in cases when binding affinity is similar due to differences in their complex mobility. Three complementary approaches were investigated to compare the thermodynamics of polyol chelation with NPBA, namely direct binding assays by CE, UV absorbance spectroscopy and an indirect pK a depression method. Overall, CE offers a convenient platform for characterization of reversible arylboronic acid interactions in free solution while allowing for direct analysis of complex mixtures of neutral/UV-transparent polyols without complicated sample handling.  相似文献   

17.
The ionization of six compounds of bis-phenolic amides was studied spectrophotochemically in DMF-water mixture. The compounds showed two pKa values in the range of 5.97-7.32 for pKa1 and 7.61-8.44 for pKa2. The obtained values of Ka were normalized using the distribution diagrams of the different species and found to be in the range of 5.81-7.42 for pKa1 and 7.48-8.27 for pKa2.  相似文献   

18.
Jia-Ning Li  Yao Fu 《Tetrahedron》2006,62(18):4453-4462
A first-principle theoretical protocol was developed, which could successfully predict the pKa values of a number of amines and thiols in DMSO with a precision of about 1.1 pKa unit. Using this protocol we calculated the pKa values of diverse types of organophosphorus compounds in DMSO. The accuracy of these predicted values was estimated to be about 1.1 pKa because phosphorus is in the same group as nitrogen and in the same period as sulfur. The theoretical predictions were also consistent with all the available experimental data. Thus, a scale of reliable pKa values was constructed for the first time for organophosphorus. These pKa values would be helpful to synthetic chemists who need to design the experimental conditions for handling deprotonated organophosphorus. On the basis of these pKa values we also studied, for the first time, some interesting topics such as the substituent effects on the pKa values of various types of organophosphorus, and the differences between the pKa values of organophosphorus and organic amines.  相似文献   

19.
The microscopic ionization behavior of piroxicam was investigated using two different approaches, i.e., direct UV spectroscopy and an indirect analogue approach (deductive method). The best microscopic pKa values (pKa12 = 4.60, pKa21 = 5.40, pKa22 = 2.72, and pKa11 = 1.92) were obtained by the deductive method using as pKa22 the pKa of the enolic O-methylated piroxicam 2 . The results show remarkable electrostatic effects in the protonation/deprotonation equilibria, a marked increase in the acidity of the enolic function (2.68 pKa units) being caused by the pyridinium group. The electronic structure of piroxicam was studied based on 1H-NMR chemical shifts at various ionization states, indicating an extended electron conjugation through the molecule. The partition measurements in octan-1-ol/H2O of zwitterionic compound 3 (the pyridyl N-methyl derivative of piroxicam ( 1 )) suggest that the two opposite charges in zwitterionic piroxicam are indeed in a close intramolecular proximity.  相似文献   

20.
In this work, quantum mechanical methods were used to predict the microscopic and macroscopic pKa values for a set of 24 molecules as a part of the SAMPL6 blind challenge. The SMD solvation model was employed with M06-2X and different basis sets to evaluate three pKa calculation schemes (direct, vertical, and adiabatic). The adiabatic scheme is the most accurate approach (RMSE?=?1.40 pKa units) and has high correlation (R2?=?0.93), with respect to experiment. This approach can be improved by applying a linear correction to yield an RMSE of 0.73 pKa units. Additionally, we consider including explicit solvent representation and multiple lower-energy conformations to improve the predictions for outliers. Adding three water molecules explicitly can reduce the error by 2–4 pKa units, with respect to experiment, whereas including multiple local minima conformations does not necessarily improve the pKa prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号