首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Herein a quantitative method for the determination of seven penicillins in bovine plasma and veterinary drugs has been developed. Amoxicillin (AMO), ampicillin (AMP), penicillin G (PENG), penicillin V (PENV), oxacillin (OXA), cloxacillin (CLO) and dicloxacillin (DICLO) were separated on a Perfectsil ODS‐2 (250×4 mm, 5 μm) column, using gradient elution, with a mobile phase of 0.1% v/v TFA and ACN–methanol (90:10 v/v). PDA detection was used at 240 nm. Penicillins were isolated from bovine plasma by SPE on Lichrolut RP‐18 cartridges with mean recoveries from 85.7 to 113.5%. Colchicine (3 ng/μL) was used as an internal standard. The developed method was validated in terms of selectivity, linearity, accuracy, precision, stability and sensitivity. Repeatability (n = 5) and between‐day precision (n = 5) revealed RSD < 12%. The detection limits in the bovine plasma were estimated as 18 ng for AMO and AMP, 25 for PENG, PENV and OXA, 3 ng for CLO and 12 ng for DICLO. Spiked plasma samples were stable for 1 wk, except for AMP and CLO, which were stable for 3 wk and OXA for 4 wk. AMO, PENG and PENV were stable for two freeze–thaw cycles, OXA, CLO and DICLO for four, while AMP only for one.  相似文献   

2.
A high-performance liquid chromatographic method was developed for the determination of five penicillins: penicillin G (PENG), penicillin V (PENV), oxacillin (OX), cloxacillin (CLO), and dicloxacillin (DICLO), in bovine muscle. Samples were macerated with a mixture of H(2)O/CH(3)CN (1:1) and purified using RP-8 Adsorbex SPE cartridges after centrifugation, with mean recovery from spiked samples higher than 89%. The separation of the examined penicillins was achieved on an analytical column, an Inertsil C8 5 microm, 250x4 mm(2), at ambient temperature. The mobile phase consisted of 0.1% TFA/ACN 50:50 v/v delivered isocratically at a flow rate of 1.1 mL/min. Analytes were monitored at 240 nm. The procedure was validated according to the European Union Decision 2002/657/EC by means of selectivity, stability, decision limit, detection capability, accuracy, and precision. Method's LOQ values achieved were 54 microg/kg for PENG and DICLO, 46 microg/kg for PENV, 16 microg/kg for OX, and 43 microg/kg for DICLO. The detection capabilities (CC(beta)) were 73.6 microg/kg for PENG, 29.1 microg/kg for PENV, 350.6 microg/kg for OX, 379.9 microg/kg for CLO, and 355.8 microg/kg for DICLO. The method was applied to various samples from the local market. Two penicillins were identified by photodiode array (PDA) detection and quantified.  相似文献   

3.
A simple and sensitive HPLC method was developed and validated for the determination of four frequently prescribed 1,4-benzodiazepines: alprazolam (ALP), bromazepam (BRZ), diazepam (DZP), and flunitrazepam (FNZ). Separation was achieved on an Inertsil C8 analytical (250 mm x 4 mm, 5 microm) column, after selective extraction of benzodiazepine drugs from biological matrices by means of SPE. Isocratic elution was performed with a mobile phase consisting of CH3COONH4, 0.05 M CH3OH, and CH3CN (33:57:10 by volume). Quantification was performed at 240 nm with mefenamic acid (6 ng/microL) as the internal standard. DSC-18 Supelco cartridges provided high absolute recoveries (81-115%). The developed method was fully validated in terms of selectivity, linearity, accuracy, precision, stability, and sensitivity. Repeatability (n = 8) and between-day precision (n = 8) revealed RSD <12%. Recoveries from biological samples ranged from 81.2 to 115%. The detection limit of the method was calculated as 3.3-10.2 ng in blood plasma and 2.6-12.6 ng in urine for 20 microL injection volume. The method was applied to spiked biological matrices. Moreover, the method was applied to real samples of urine after an oral administration.  相似文献   

4.
A simple, rapid and sensitive HPLC method was developed and validated for the determination of four tricyclic antidepressants (TCAs): amitriptyline, doxepin, clomipramine (CLO) and imipramine, in pharmaceutical formulations and biological fluids. A Kromasil C(8 )analytical column (250 x 4 mm, 5 microm) was used for the separation, with a mobile phase consisting of 0.05 M CH(3)COONH(4) and CH(3)CN (45:55 v/v) delivered at 1.5 mL/min isocratically. Quantification was performed at 238 nm, with bromazepam (1.5 ng/microL) as the internal standard. The determination of TCAs in blood plasma was performed after protein precipitation. Urine analysis was performed by means of SPE using Lichrolut RP-18 Merck cartridges providing high absolute recoveries (> 94%). Direct analysis of urine was also performed after two-fold dilution. The developed method was fully validated in terms of selectivity, linearity, accuracy, precision, stability and sensitivity. Repeatability (n = 5) and between-day precision (n = 5) revealed RSD <13%. Recoveries from biological samples ranged from 91.0 to 114.0%. The absolute detection limit of the method was calculated as 0.1-0.6 ng in blood plasma and 0.2-0.5 ng in extracted urine or 0.4-0.7 in diluted urine. The method was applied to real samples of plasma from a patient under CLO treatment.  相似文献   

5.
A rapid, accurate and sensitive method has been developed for the quantitative determination of four fluoroquinolone antimicrobial agents, enoxacin, norfloxacin, ofloxacin and ciprofloxacin, with high in-vitro activity against a wide range of Gram-negative and Gram-positive organisms.A Kromasil 100 C(8) 250 mm x 4 mm, 5 microm analytical column was used with an eluting system consisting of a mixture of CH(3)CN-CH(3)OH-citric acid 0.4 mol L(-1) (7:15:78 %, v/v). Detection was performed with a variable wavelength UV-visible detector at 275 nm resulting in limits of detection: 0.02 ng per 20 microL injection for enoxacin and 0.01 ng for ofloxacin, norfloxacin and ciprofloxacin. Hydrochlorothiazide (HCT) was used as internal standard at a concentration of 2 ng microL(-1). A rectilinear relationship was observed up to 2 ng microL(-1) for enoxacin, 12 ng microL(-1) for ofloxacin, 3 ng microL(-1) for norfloxacin, and 5 ng microL(-1) for ciprofloxacin. Separation was achieved within 10 min. The statistical evaluation of the method was examined by performing intra-day (n=8) and inter-day precision assays (n=8) and was found to be satisfactory with high accuracy and precision. The method was applied to the direct determination of the four fluoroquinolones in human blood serum. Sample pretreatment involved only protein precipitation with acetonitrile. Recovery of analytes in spiked samples was 97+/-6% over the range 0.1-0.5 ng microL(-1).  相似文献   

6.
A sensitive and reliable method using liquid chromatography-electrospray tandem mass spectrometry has been developed and validated for the trace determination of beta-lactam antibiotics in natural and wastewater matrices. Water samples were enriched by solid-phase extraction. The analytes included amoxicillin (AMOX), ampicillin (AMP), oxacillin (OXA), cloxacillin (CLOX) and cephapirin (CEP). Average recoveries of beta-lactams (BLs) in fortified samples were generally above 75% (except amoxicillin) with the standard deviations lower than 10% in water matrices. Amoxicillin was not quantified due to poor recovery (less than 40%) in the investigated water matrices. Matrix effects were found to be minimal when measuring these compounds in water matrices. The accuracy, within- and between-run precision of the assay fell within acceptable ranges of 15% absolute. The method detection limit (MDL) was estimated to range between 8 and 10 ng/L in surface water, 13 and 18 ng/L in the influent and 8 and 15 ng/L in the effluent from a wastewater treatment plant. A large number of actual water samples were analyzed using this method in order to evaluate the occurrence of the beta-lactams in a river and a wastewater treatment plant in northern Colorado. Most of the samples were negative for all analytes. These compounds were found at 15-17 ng/L in the three influent samples and at 9-11 ng/L in three surface water samples out of a total of 200 samples. This indicates that contamination by beta-lactam antibiotics is of minor importance to the small mixed-watershed.  相似文献   

7.
An HPLC method was developed for the simultaneous determination of seven water-soluble vitamins, viz. thiamine, riboflavin, nicotinic acid, nicotinamide, pyridoxine, cyanocobalamin, and folic acid, in multivitamin pharmaceutical formulations and biological fluids (blood serum and urine). Separation was achieved at ambient temperature on a Phenomenex Luna C18 (150 x 4.6 mm) analytical column. Gradient elution was performed starting at a 99:1 A:B v/v composition, where A: 0.05 M CH3COONH4/CH3OH (99/1) and B: H2O/CH3OH (50/50), at a flow rate of 0.8 mL/min. After a 4-min isocratic elution the composition was changed to 100% of B in 18 min and elution continued isocratically for 8 min. Detection was performed with a photodiode array detector at 280 nm. Each vitamin was quantitatively determined at its maximum wavelength. Spectral comparison was used for peak identification in real samples. Detection limits were in the range of 1.6-3.4 ng, per 20-microL injection, while linearity held up to 25 ng/microL. Accuracy, intra-day repeatability (n = 6), and inter-day precision (n = 7) were found to be satisfactory. Theobromine (2 ng/microL) was used as internal standard. Sample preparation of biological fluids was performed by SPE on Supelclean LC-18 cartridges with methanol-water 85/15 v/v as eluent. Extraction recoveries from biological matrices ranged from 84.6% to 103.0%.  相似文献   

8.
A novel sorbent material of ultrapure silica gel provided with novel State of the Art Bonding- and Endcapping Technology commercially available under the name PerfectSil Target (250 x 4 mm, ODS-3, 5 microm, by MZ-Analysentechnik, Germany) was used and validated for the sensitive HPLC determination of ten quinolone antibiotics: enoxacin, ofloxacin, norfloxacin, ciprofloxacin, danofloxacin (DAN), enrofloxacin (ENR), sarafloxacin, oxolinic acid (OXO), nalidixic acid (NAL), and flumequine. The analytical column validation was performed in terms of separation efficiency, precision, and peak asymmetry. The separation was achieved at ambient temperature using a mobile phase of TFA (0.1%)-CH3OH-CH3CN delivered under the optimum gradient program, at a flow rate of 1.2 mU/min. Photodiode array detection was used and eluant was monitored at 275 nm. For the quantitative determination caffeine (7.5 ng/microL) was used as internal standard. The achieved LODs were 0.03 ng/microL per 50 microL injected volume for OXO, 0.1 ng/microL for DAN, ENR, and NAL, and 0.2 ng/microL for the remaining six studied quinolones. The method was validated in terms of interday (n = 6) and intraday (n = 5) precision and accuracy. The proposed method was successfully applied to the analysis of pharmaceutical formulations destined either for human or for veterinary use.  相似文献   

9.
A direct, accurate, and sensitive chromatographic analytical method for the quantitative determination of five fluoroquinolones (enoxacin, ofloxacin, norfloxacin, ciprofloxacin, and enrofloxacin) in chicken whole blood is proposed in the present study. For quantitative determination lamotrigine was used as internal standard at a concentration of 20 ng/microL. The developed method was successfully applied to the determination of enrofloxacin, as the main component of commercially available veterinary drugs. Fluoroquinolone antibiotics were separated on an Inertsil (250 x 4 mm) C8, 5 microm, analytical column, at ambient temperature. The mobile phase consisted of a mixture of citric acid (0.4 mol L(-1))-CH3OH-CH3CN (87:9:4% v/v) leading to retention times less than 14 min, at a flow rate 1.4 mL min(-1). UV detection at 275 nm provided limits of detection of 2 ng/mL per 20 microL injected volume for enoxacin, norfloxacin, and ciprofloxacin, 0.4 ng/mL for ofloxacin, and 4 ng/mL for enrofloxacin. Preparation of chicken blood samples is based on the deproteinization with acetonitrile while the pharmaceutical drug was simply diluted with water. Peaks of examined analytes in real samples were identified by means of a photodiode array detector. The method was validated in terms of within-day (n=6) precision and accuracy after chicken whole blood sample deproteinization by CH3CN. Using 50 microL of chicken blood sample, recovery rates at fortification levels of 40, 60, and 80 ng ranged from 86.7% to 103.7%. The applicability of the method was evaluated using real samples from chicken under fluoroquinolone treatment.  相似文献   

10.
A densitometric high performance thin-layer chromatography (HPTLC) method was developed and validated for the quantitative analysis of haloperidol in tablets. Chromatographic separation was achieved on precoated silica gel F 254 HPTLC plates using a mixture of acetone/chloroform/n-butanol/acetic acid glacial/water (5:10:10:2.5:2.5 v/v/v/v/v) as the mobile phase. Quantitative analysis was carried out at a wavelength of 254 nm. The method was linear in the 10-100 ng/microL range, with a determination coefficient of 0.999. The coefficients of variation for precision were not higher than 2.35%. The detection limit was 0.89 ng/microL, and the quantification limit was 2.71 ng/microL. The accuracy ranged from 97.76 to 100.33%, with a CV not higher than 4.50%. This method was successfully applied to quantify haloperidol in real pharmaceutical samples, including the comparison with HPLC measurements. The method was fast, specific, with a good precision and accuracy for the quantitative determination of haloperidol in tablets.  相似文献   

11.
Duan H  Liu Z  Liu S  Yi A 《Talanta》2008,75(5):1253-1259
Under the HCl solution and heating condition, penicillin antibiotics such as amoxicillin (AMO), ampicillin (AMP), sodium cloxacillin (CLO), sodium carbenicillin (CAR) and sodium benzylpenicillin (BEN) could react with Fe(III) to produce Fe(II) which further reacted with Fe(CN)63− to form a Fe3[Fe(CN)6]2 complex. By virtue of hydrophobic force and Van der Waals force, the complex aggregated to form Fe3[Fe(CN)6]2 nanoparticles with an average diameter of 45 nm. This resulted in a significant enhancement of resonance Rayleigh scattering (RRS) and non-linear scattering such as second-order scattering (SOS) and frequency doubling scattering (FDS). The increments of scattering intensity (ΔI) were directly proportional to the concentrations of the antibiotics in a certain range. The detection limits for the five penicillin antibiotics were 2.9–6.1 ng ml−1 for RRS method, 4.0–6.8 ng ml−1 for SOS method and 7.4–16.2 ng ml−1 for FDS method, respectively. Among them, the RRS method exhibited the highest sensitivity and the AMO system was more sensitive than other antibiotics systems. Based on the above researches, a new highly sensitive and simple method for the indirect determination of penicillin antibiotics has been developed. It can be applied to the determination of penicillin antibiotics in capsule, tablet, human serum and urine samples. In this work, the spectral characteristics of absorption, RRS, SOS and FDS spectra, the optimum conditions of the reaction and the influencing factors were investigated. In addition, the reaction mechanism was discussed.  相似文献   

12.
A densitometric high performance thin-layer chromatographic (HPTLC) method was developed and validated for quantitative analysis of L-DOPA in tablets. Chromatographic separation was achieved on precoated silica gel F 254 HPTLC plates using a mixture of acetone-chloroform-n-butanol-acetic acid glacial-water (60:40:40:40:35 v/v/v/v/v) as mobile phase. Quantitative analysis was carried out at a wavelength of 497 nm. The method was linear between 100 and 500 ng/microL, with a correlation coefficient of 0.999. The intra-assay variation was between 0.26 and 0.65% and the interassay was between 0.52 and 2.04%. The detection limit was 1.12 ng/microL, and the quantification limit was 3.29 ng/microL. The accuracy ranged from 100.40 to 101.09%, with a CV not higher than 1.40%. The method was successfully applied to quantify L-DOPA in real pharmaceutical samples, including the comparison with HPLC measurements. The method was fast, specific, with a good precision, and accurate for the quantitative determination of L-DOPA in tablets.  相似文献   

13.
The aim of the present study was to attempt to describe the procedure of isolation, purification, enrichment and determination of 4-n-nonylphenol (4-n-NP) and 4-tert-octylphenol (4-t-OP) in water and biological samples (fish tissue). There were five procedures of solid phase extraction (SPE) tested using different sorbents for the isolation of analytes from water samples. Moreover, we isolated these chemicals from biological matrices with the aid of various extraction methods. The purpose of it was to perform an optimisation of ultrasonic bath, accelerated solvent extraction (ASE) and solid phase extraction process of alkylphenols from biological samples, through the choice of selective sorbents (octadecyl, octadecyl end-capped and amine) and search solvents (methylene chloride, methanol, hexane). Reversed-phase HPLC with diode array detection was used for the determination of 4-n-NP and 4-t-OP in water and fish tissue samples. Sensitivity was evaluated by determining the limit of detection (LOD=0.06 and 0.04ng microL(-1)) and limit of quantification (LOQ=0.18 and 0.16ng microL(-1)) of 4-NP and 4-t-OP, respectively. A series of standard solutions for 4-n-NP and 4-t-OP provided the basis for plotting an analytical curve and obtaining a linear dependence in the range of approximately 1-25ng microL(-1). The best efficiencies obtained for 4-n-NP and 4-t-OP in water samples were 76.65% (+/-1.49) and 83.08% (+/-3.73), respectively. In the case of fish tissue, different situation was observed because the obtained values were considerably lower, being 68.32% for 4-t-OP using hexane (program 1) as solvent and 72.35% (program 2) for 4-n-NP using acetonitrile.  相似文献   

14.
An instrumental planar chromatographic (HPTLC) method for quantitative analysis of clozapine in human serum was developed and validated. Clozapine was extracted with n-hexane-isoamyl alcohol (75:25 v/v). The chromatographic separation was achieved on precoated silica gel F 254 HPTLC plates using a mixture of chloroform and methanol (9:1 v/v) as mobile phase. Quantitative analyses were carried out by densitometry at a wavelength of 290 nm. The method was linear between 10 and 100 ng/spot, corresponding to 0.10 and 1.00 ng/microL of clozapine in human serum after extraction process and applying 10 microL to the chromatographic plates. The method correlation coefficient was 0.999. The intra-assay variation was between 2.10 and 3.33% (n = 5) and the interassay was between 2.67 and 4.44% (n = 9). The detection limit was 0.03 ng/microL, and the quantification limit was 0.05 ng/microL. The method proved to be accurate, with a recovery between 97.00 and 99.00%, with an RSD not higher than 7.22%, and was selective for the active principle tested. This method was successfully applied to quantify clozapine in patient serum samples. In conclusion, the method is useful for the quantitative determination of clozapine in serum.  相似文献   

15.
The potential of solid-phase extraction coupled on-line to liquid chromatography/electrospray tandem mass spectrometry (SPE-LC-ESI-MS/MS) has been investigated in this paper for the efficient sensitive quantification and confirmation of 16 antibiotics in water. The list of targeted analytes included 10 quinolones (oxolinic acid (OXO), nalidixic acid (NAL), flumequine (FLU), marbofloxacine (MAR), ofloxacine (OFLO), enrofloxacine (ENR), pefloxacine (PEF), ciprofloxacine (CIP), pipemidic acid (PIPE), norfloxacine (NOR)) and 6 penicillins (penicillin G (PEN), oxacillin (OXA), dicloxacillin (DIC), piperacillin (PIP), cloxacillin (CLO) and ampicillin (AMP)) that were determined in ground and surface water. The procedure is based on the injection of 9.8 mL of sample into the SPE-LC-MS/MS system and the measurement of antibiotics by selected reaction monitoring mode, using a triple quadrupole analyser. The method has been validated at realistic low concentrations that might be present in environmental water, i.e. 10 and 100 ng L(-1), obtaining recoveries between 74% and 123% with relative standard deviation lower than 14%. Matrix effects were not relevant in most of cases, except for ampicillin in surface water, where notable signal suppression was observed. The limits of detection were as low as 0.4-4.3 ng L(-1). The method developed allows the rapid screening and quantification of all the analytes selected by acquiring one MS/MS transition (normally the most sensitive) for each compound. It was applied to a number of actual surface and groundwater samples with several compounds being detected, mainly quinolones, at low ng L(-1) levels. Special attention was given to the confirmation of compounds detected in water due to the difficulties of obtaining confident confirmation at low ng L(-1). This matter has been of growing concern in the last few years as reflected by recent papers and correspondence. The acquisition of several MS/MS transitions for each compound detected in a second independent analysis allowed the unequivocal confirmation of identity, avoiding reporting false-positives. Finally, the potential of QTOF instruments to confirm positive samples has also been evaluated and compared with triple quadrupole analysers.  相似文献   

16.
A fully validated and clinically relevant assay was developed for the assessment of nevirapine concentrations in neonate blood plasma samples. Solid-phase extraction with an acid-base wash series was used to prepare subject samples for analysis. Samples were separated by high performance liquid chromatography and detected at 280 nm on a C8 reverse-phase column in an isocratic mobile phase. The retention times of nevirapine and its internal standard were 5.0 and 6.9 min, respectively. The method was validated by assessment of accuracy and precision (statistical values <15%), specificity, and stability. The assay was linear in the range 25-10,000 ng/mL (r2 > 0.996) and the average recovery was 93% (n = 18). The lower limit of quantification (relative standard deviation <20%) was determined to be 25 ng/mL for 50 microL of plasma, allowing detection of as little as 1.25 ng of nevirapine in a sample. This value represents an increase in sensitivity of up to 30-fold over previously published methods.  相似文献   

17.
A new method was developed for determination of methomyl in water samples by combining a dispersive liquid-liquid microextraction (DLLME) technique with HPLC-variable wavelength detection (VWD). In this extraction method, 0.50 mL of methanol (as dispersive solvent) containing 20.0 microL of tetrachloroethane (as extraction solvent) was rapidly injected by syringe into a 5.00-mL water sample containing the analyte, thereby forming a cloudy solution. After phase separation by centrifugation for 2 min at 4000 rpm, the enriched analyte in the settled phase (8 +/- 0.2 microL) was at the bottom of the conical test tube. A 5.0-microL volume of the settled phase was analyzed by HPLC-VWD. Parameters such as the nature and volume of the extraction solvent and the dispersive solvent, extraction time, and the salt concentration were optimized. Under the optimum conditions, the enrichment factor could reach 70.7 for a 5.00-mL water sample and the linear range, detection limit (S/N = 3), and precision (RSD, n = 6) were 3-5000 ng/mL, 1.0 ng/mL, and 2.6%, respectively. River and lake water samples were successfully analyzed by the proposed method. Comparison of this method with solid-phase extraction, solid-phase microextraction, and single-drop microextraction, indicates that DLLME combined with HPLC-VWD is a simple, fast, and low-cost method for the determination of methomyl, and thus has tremendous potential in trace analysis of methomyl in natural waters.  相似文献   

18.
A novel method for the simultaneous determination of six benzodiazepines (BZDs) and four tricyclic antidepressants (TCAs) in biological fluids by HPLC with UV detection at 240 nm has been developed. After a deproteinization step biological fluids were analyzed by direct injection. SPE on Nexus cartridges was also applied. Since two compounds, namely imipramine and diazepam, were coeluting, a sequential SPE protocol has been developed. BZDs were eluted by a mixture of methanol/ACN(1:1), followed by the elution of TCAs with methanol. Separation was performed on a Kromasil C8 column (250 x 64 mm(2) id, 5 microm) using a mobile phase of 0.05 MCH3COONH4/ACN/methanol (initial composition 55:15:30 v/v/v) at a flow rate of 1.0 mL/min delivered by a gradient program within 15 min. Colchicine was used as the internal standard (4 ng/microL). The method was linear for all analytes up to 20 ng/lL, with coefficients of regression between 0.996 and 0.99996. LODs and LOQs were 0.08-1.17 and 0.28-3.91 ng/lL, respectively. Recovery was in the range of 92.8-108.7% for within-day and 91.9-109.9% for between-day assays, with RSD values lower than 10.0% for all matrices.  相似文献   

19.
A simple, rapid, and sensitive method for the determination of naproxen and ibuprofen in complex biological and water matrices (cow milk, human urine, river, and well water samples) has been developed using ultrasound‐assisted magnetic dispersive solid‐phase microextraction. Magnetic ethylendiamine‐functionalized graphene oxide nanocomposite was synthesized and used as a novel adsorbent for the microextraction process and showed great adsorptive ability toward these analytes. Different parameters affecting the microextraction were optimized with the aid of the experimental design approach. A Plackett–Burman screening design was used to study the main variables affecting the microextraction process, and the Box–Behnken optimization design was used to optimize the previously selected variables for extraction of naproxen and ibuprofen. The optimized technique provides good repeatability (relative standard deviations of the intraday precision 3.1 and 3.3, interday precision of 5.6 and 6.1%), linearity (0.1–500 and 0.3–650 ng/mL), low limits of detection (0.03 and 0.1 ng/mL), and a high enrichment factor (168 and 146) for naproxen and ibuprofen, respectively. The proposed method can be successfully applied in routine analysis for determination of naproxen and ibuprofen in cow milk, human urine, and real water samples.  相似文献   

20.
This paper describes the development of a new method using single-drop microextraction (SDME) and RP-HPLC for the determination of decabromodiphenyl ether (BDE-209) in water samples. The effects of SDME parameters such as extraction solvent, microdrop volume, extraction time, stirring speed, salt concentration, and sample pH on the extraction performance are investigated. Under optimal extraction conditions (extraction solvent, toluene; solvent drop volume, 3.0 microL; extraction time, 15 min; stirring speed, 600 rpm; no addition of salt and change of sample pH), the calibration curve was drawn by plotting peak area against a series of BDE-209 concentrations (0.001-1 microg/mL) in aqueous solution; the correlation coefficient (r) was 0.9998. The limit of detection was 0.7 ng/mL. The enrichment factor was 10.6. The precision of this method was obtained by six successive analyses of a 100 ng/mL standard solution of BDE-209, and RSD was 4.8%. This method was successfully applied to the extraction of BDE-209 from tap and East Lake water samples with relative recoveries ranging from 92.5 to 102.8% and from 91.5 to 96.2%, respectively, and the relative standard deviations (n = 3) were 4.4 and 2.2%. The proposed method is acceptable for the analysis of BDE-209 in water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号