首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Friedel–Crafts reaction of electron‐rich phenols with isatins was developed by employing bifunctional thiourea–tertiary amine organocatalysts. Cinchona alkaloid derived thiourea epiCDT‐ 3 a efficiently catalyzed the Friedel–Crafts‐type addition of phenols to isatin derivatives to provide 3‐aryl‐3‐hydroxy‐2‐oxindoles 7 and 9 in good yield (80–95 %) with good enantiomeric excess (83–94 %). Friedel–Crafts adduct 7 t was subjected to a copper(I)‐catalyzed azide–alkyne cycloaddition to obtain biologically important 3‐aryl‐3‐hydroxy‐2‐oxindole 11 in good enantiomeric excess and having a 1,2,3‐triazole moiety.  相似文献   

2.
The enantioselective total synthesis of (+)‐gracilamine ( 1 ) is described. The strategy features a diastereoselective phenolic coupling reaction followed by a regioselective intramolecular aza‐Michael reaction to construct the ABCE ring system. The configuration at C3a in 1 was controlled by the stereocenter at C9a, which was selectively generated (91 % ee) by an organocatalytic enantioselective aza‐Friedel–Crafts reaction developed by our research group. This synthesis revealed that the absolute configuration of (+)‐gracilamine is 3aR, 4S, 5S, 6R, 7aS, 8R, 9aS.  相似文献   

3.
The first examples of 3,3‐diaryloxetanes are prepared in a lithium‐catalyzed and substrate dependent divergent Friedel–Crafts reaction. para‐Selective Friedel–Crafts reactions of phenols using oxetan‐3‐ols afford 3,3‐diaryloxetanes by displacement of the hydroxy group. These constitute new isosteres for benzophenones and diarylmethanes. Conversely, ortho‐selective Friedel–Crafts reactions of phenols afford 3‐aryl‐3‐hydroxymethyl‐dihydrobenzofurans by tandem alkylation–ring‐opening reactions; the outcome of the reaction diverging to structurally distinct products dependent on the substrate regioselectivity. Further reactivity of the oxetane products is demonstrated, suitable for incorporation into drug discovery efforts.  相似文献   

4.
A new chiral reagent has been developed for generalized installation of pharmacophoric (S)‐ or (R)‐2‐(alkoxyphosphono)‐1‐amino‐2,2‐difluoroethyl group into organic compounds. The original synthetic application of this new reagent is exemplified by Friedel–Crafts reactions with indoles, which proceed efficiently with excellent diastereoselectivity to give enantiomerically pure products.  相似文献   

5.
The first catalytic asymmetric cascade reaction of 7‐vinylindoles has been established by the rational design of such substrates. Cascade reactions with isatin‐derived 3‐indolylmethanols in the presence of a chiral phosphoric acid derivative allow the diastereo‐ and enantioselective synthesis of C7‐functionalized indoles as well as the construction of cyclopenta[b]indole and spirooxindole frameworks (all >95:5 d.r., 94–>99 % ee). This approach not only addresses the great challenge of the catalytic asymmetric synthesis of C7‐functionalized indoles, but also provides an efficient method for constructing biologically important cyclopenta[b]indole and spirooxindole scaffolds with excellent optical purity. Investigation of the reaction pathway and activation mode has suggested that this cascade reaction proceeds through a vinylogous Michael addition/Friedel–Crafts process, in which dual H‐bonding activation of the two reactants plays a crucial role.  相似文献   

6.
The highly enantioselective organocatalytic construction of spiroindanes containing an all‐carbon quaternary stereocenter by intramolecular Friedel–Crafts‐type 1,4‐addition is described. The reaction was catalyzed by a cinchonidine‐based primary amine and accelerated by water and p‐bromophenol. A variety of spiro compounds containing quaternary stereocenters were obtained with excellent enantioselectivity (up to 95 % ee). The reaction was applied to the asymmetric formal synthesis of the spirocyclic natural products (?)‐cannabispirenones A and B.  相似文献   

7.
Transesterification of R‐substituted phenyl benzoates 1–5 with 4‐methoxyphenol 6 was kinetically investigated in the presence of K2CO3 in dimethylformamide (DMF) at various temperatures. The Hammett plots for the reactions of the 1–5 demonstrate good linear correlations with σ0 constants. Low magnitude of ρLG values indicate that the leaving group departure occurs after the rate‐determining step. The Brønsted coefficient values for the reactions (?0.2, ?0.16, ?0.13 at 15, 24, 36°C, respectively) demonstrate the weak effect of leaving group substituent on the reactivity of R‐substituted phenyl benzoates 1–5 for the reactions with 4‐methoxyphenol 6 in the presence of K2CO3 in DMF. The leaving group substituent effect on free energy (ΔG), enthalpy (ΔH), and entropy (ΔS) of activation was examined. It was shown that the activation parameters obtained depend weakly on the leaving group substituent effect. The reaction is entropy controlled in case the leaving group substituent becomes electron withdrawing.  相似文献   

8.
Substituted naphthofurans and benzofurans are easily accessible by treatment of naphthols/substituted phenols with nitroallylic acetates through a substitution–elimination process promoted by cesium carbonate. Reactions between naphthols and aromatic/heteroaromatic‐substituted nitroallylic acetates gave the desired functionalized naphthofurans in high to excellent chemical yields (14–97 %). On the other hand, treatment of phenol derivatives (i.e., 3‐dimethylamino‐, 3‐methoxy‐, and 3,5‐dimethoxyphenol) with various nitroallylic acetates afforded the corresponding benzofurans in moderate to good chemical yields (24–91 %). The reaction proceeded through an interesting Friedel–Crafts SN2′ process followed by intramolecular oxa‐Michael cyclization and subsequent aromatization. A plot of log (k/kH) against Hammett constants σp showed satisfactory linearity with a positive ρ value, indicating that the initial Friedel–Crafts‐type SN2′ process constituted the rate‐determining step. This methodology has been applied to the synthesis of various novel C2 and C3 symmetric bis‐ and trisfurans by using catechol and phloroglucinol as the nucleophilic partners. The reactivity decreased when alkyl‐substituted nitroallylic acetate systems were used. This might be related to the decreased electrophilic character of these substrates.  相似文献   

9.
The thermal behavior and kinetic parameters of the exothermic decomposition reaction of N‐N‐bis[N‐(2,2,2‐tri‐nitroethyl)‐N‐nitro]ethylenediamine in a temperature‐programmed mode have been investigated by means of differential scanning calorimetry (DSC). The results show that kinetic model function in differential form, apparent activation energy Ea and pre‐exponential factor A of this reaction are 3(1 ‐α)2/3, 203.67 kJ·mol?1 and 1020.61s?1, respectively. The critical temperature of thermal explosion of the compound is 182.2 °C. The values of ΔS ΔH and ΔG of this reaction are 143.3 J·mol?1·K?1, 199.5 kJ·mol?1 and 135.5 kJ·mol?1, respectively.  相似文献   

10.
The thermal behavior of Tb2 (p‐MBA)6(phen)2 (p‐MBA=p‐methylbenzoate; phen=1,10‐phenanthroline) in a static air atmosphere was investigated by TG‐DTG, SEM and IR techniques. The thermal decomposition of the Tb2(p‐MBA)6(phen)2 occurred in three consecutive stages at TP of 354, 457 and 595 °C. By Malek method, RO (n<1) was defined as kinetic model for the first‐step thermal decomposition. The activation energy (E) of this step is 170.21 kJ·mol‐1, the enthalpy of activation (ΔH) 164.98 kJ·mol‐1, the Gibbs free energy of activation (ΔG) 145.04 kJ·mol‐1, the entropy of activation (ΔS) 31.77 J·mol‐1·K‐1, and the pre‐exponential factor (A) 1015.21 s‐1.  相似文献   

11.
The cyclization of N‐(2‐chloropropionyl)aniline to 3‐methylindolin‐2‐one through Friedel–Crafts alkylation was studied. It was found that N‐phenylacrylamide (12.6%) and 3,4‐dihydro‐2(1H)‐quinolinone (1.5%) as main byproducts were obtained. On the basis of the mechanism of Friedel–Crafts alkylation, the generation mechanisms of these two compounds were proposed.  相似文献   

12.
A concise and highly stereoselective total synthesis of the Daphniphyllum alkaloids (?)‐daphenylline has been accomplished. The synthesis was started from (S)‐carvone and proceeded via a stereoselective Mg(ClO4)2‐catalyzed intramolecular amide addition cyclization, an intramolecular Diels–Alder reaction to construct the ABCD tetracyclic core architecture, and a Robinson annulation coupled with an oxidative aromatization sequence. Finally, the DF ring system was installed through an intramolecular Friedel–Crafts cyclization. The total synthesis of (?)‐daphenylline is achieved in 19 steps in the longest reaction sequence and in 7.6 % overall yield.  相似文献   

13.
The first Lewis acid catalyzed enantioselective ring‐opening desymmetrization of a donor–acceptor meso‐diaminocyclopropane is reported. The copper(II)‐catalyzed Friedel–Crafts alkylation of indoles and one pyrrole with an unprecedented meso‐diaminocyclopropane delivered enantioenriched, diastereomerically pure urea products, which are structurally related to natural and synthetic bioactive compounds. The development of a new ligand through the investigation of an underexplored subclass of bis(oxazoline) ligands was essential for achieving high enantioselectivities.  相似文献   

14.
The Friedel‐Crafts alkylation (F‐CA) reaction is a special kind of carbon?carbon bond formations, which is frequently being used for the formation of such bond in some aromatic rings in organic synthesis. Its asymmetric variant gives enantiorich products. Commonly, an in situ organocatalyzed asymmetric Friedel‐Crafts alkylation (AF‐CA) proceeds via generation of an enamine as an intermediate. The organocatalyzed‐AF‐CA was discovered and established in the mid‐1980s and reviewed comprehensively in 2010. In this report, we are trying to update the applications of novel organocatalysts in the AF‐CA as a versatile synthetic strategy, which is frequently used in the effective asymmetric synthesis of complex molecules, pharmaceutically important compounds and most importantly in the total synthesis of biologically active natural products.  相似文献   

15.
Comprehensive mechanistic studies on the enantioselective aldol reaction between isatin ( 1 a ) and acetone, catalyzed by L ‐leucinol ( 3 a ), unraveled that isatin, apart from being a substrate, also plays an active catalytic role. Conversion of the intermediate oxazolidine 4 into the reactive syn‐enamine 6 , catalyzed by isatin, was identified as the rate‐determining step by both the calculations (ΔG=26.1 kcal mol?1 for the analogous L ‐alaninol, 3 b ) and the kinetic isotope effect (kH/kD=2.7 observed for the reaction using [D6]acetone). The subsequent reaction of the syn‐enamine 6 with isatin produces (S)‐ 2 a (calculated ΔG=11.6 kcal mol?1). The calculations suggest that the overall stereochemistry is controlled by two key events: 1) the isatin‐catalyzed formation of the syn‐enamine 6 , which is thermodynamically favored over its anti‐rotamer 7 by 2.3 kcal mol?1; and 2) the high preference of the syn‐enamine 6 to produce (S)‐ 2 a on reaction with isatin ( 1 a ) rather than its enantiomer (ΔΔG=2.6 kcal mol?1).  相似文献   

16.
A highly enantioselective Friedel–Crafts (F–C) alkylation of indoles and pyrrole with chalcone derivatives catalyzed by a chiral N,N′‐dioxide–Sc(OTf)3 complex has been developed that tolerates a wide range of substrates. The reaction proceeds in moderate to excellent yields and high enantioselectivities (85–92 % enantiomeric excess) using 2 mol % (for indole) or 0.5 mol % (for pyrrole) catalyst loading, which showed the potential value of the catalyst system. Meanwhile, a strong positive nonlinear effect was observed. On the basis of the experimental results and previous reports, a possible working model is proposed to explain the origin of the activation and asymmetric induction.  相似文献   

17.
N‐Boc ketimines derived from pyrazolin‐5‐ones were explored to develop an unprecedented domino aza‐Friedel–Crafts/N,O‐acetalization reaction with 2‐naphthols. The novel method requires a catalyst loading of only 0.5 mol % of a bifunctional squaramide catalyst, is scalable to gram amounts, and provides a new series of furanonaphthopyrazolidinone derivatives bearing two vicinal tetra‐substituted stereogenic centers in excellent yields (95–98 %) and stereoselectivity (>99:1 d.r. and 97–98 % ee ). A different reactivity was observed in the case of 1‐naphthols and other electron‐rich phenols, which led to the aza‐Friedel–Crafts adducts in 70–98 % yield and 47–98 % ee .  相似文献   

18.
A kinetic study is reported for SNAr reactions of 2,4,6‐tris(trifluoromethanesulfonyl) anisole 1a with a series of para‐X‐substituted anilines 2a–e in a methanol solution at various temperatures. The substituent effects on free energy (ΔG), enthalpy (ΔH), and entropy (ΔS) of activation are examined. Aniline addition to triflone 1a is characterized by a βX=0.57, αZ=0.31, and an imbalance of I = αZ–βX=?0.26. The imbalance shows that resonance development lags behind C? N bond formation at the transition state. Interestingly, analysis of the results in terms of Marcus theory reveals that these SNAr are associated with some extremely low intrinsic reactivity (log ko=?1.25& © 2011 Wiley Peiodicals, Inc. Int J Chem Kinet 43: 255–262, 2011  相似文献   

19.
Second‐order rate constants have been measured spectrophotometrically for reactions of 2,6‐dimethoxy‐3,5‐dinitropyridine 1 with 4‐X‐substituted phenoxide anions (X = OMe, Me, H, Cl, and CN) 2a–e in aqueous solution at various temperatures. The effect of phenoxide substituents on the reaction rate was examined quantitatively on the basis of kinetic measurements, leading to nonlinear correlations of ΔH and ΔS with Hammett's substituent constants (σ). Each Hammett plots exhibits two intersecting straight lines for the reactions of 1 with the phenoxide anions 2a–e , whereas the Yukawa–Tsuno plots for the same reactions are linear. The large negative ρ values (?4.03 to ?3.80) obtained for the reactions of 1 with the phenoxide anions possessing an electron‐donating group supports the proposal that the reactions proceed through a single‐electron transfer mechanism.  相似文献   

20.
The multi‐ligand coordination compound copper(II) 1,2‐diaminopropane (pn) azide, [Cu(pn)(N3)2]n ( 1 ), was synthesized using pn and azido groups. It was characterized by X‐ray single crystal diffraction, elemental analysis, and FT‐IR spectroscopy. The crystal structure of 1 belongs to the monoclinic system, space group C2/c. The copper(II) cation is six‐coordinated by one pn molecule and four azido ligands with μ‐1 and μ‐1,1,3 coordination modes. Thermogravimetric investigations with a heating rate of 10 K · min–1 under nitrogen showed one main exothermic stage with a peak temperature of 215.7 °C in the DSC curve. The non‐isothermal kinetics parameters were calculated by Kissinger and Ozawa methods, respectively. The heat of combustion was measured by oxygen bomb calorimetry, and the enthalpy of formation, the critical temperature of thermal explosion, the entropy of activation (ΔS), the enthalpy of activation (ΔH), and the free energy of activation (ΔG) were calculated. The measurements showed that 1 has very high impact, friction, and flame sensitivities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号