首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
在密度泛函理论和原子-键电负性均衡模型基础上,定义了与化学键有关的响应函数以及化学键区域的Fukui函数,建立了一套快速确定分子中各区域(包括原子区域和化学键区域)响应函数的新方法.对大量分子的响应函数的计算结果表明,该方法得到的响应函数可以较好地预测分子中各点的反应活性,并更加快捷省时,展示了原子-键电负性均衡模型的广阔应用前景.  相似文献   

2.
确定大分子体系电荷分布的新方法   总被引:1,自引:1,他引:0  
近年来,应用密度泛函理论探求电负性和硬度与体系中电荷分布之间的关系,成为令人关注的课题[1~5].Mortier[1,2]的电负性均衡方法(EEM)没有考虑化学键电荷.Ghosh[4]的半经验电负性均衡方法考虑了化学键电荷,但键电荷取值假设太简单.本文同时考虑了分子中的原子电荷和键电荷的作用,给出了分子中原子和化学键有效电负性的精密公式,这些公式为发展一个系统的精密电负性均衡方法及应用奠定了基础.1理论方法以密度泛函理论[6]为基础,将分子的单电子密度ρmol(r)按式(1)分割:式中ρα(r)是分子中α原子区域的单电子密度,ρα…  相似文献   

3.
以密度泛函理论和电负性均衡原理为基础 ,将体系的单电子密度分割为原子的单电子密度和键的单电子密度 ,得到了分子总能量、分子中原子以及键的有效电负性的表达式 .基于这些表达式 ,提出了直接计算体系的总能量和体系中电荷分布的新方法 .此模型比其他电负性均衡方法更合理 .对大量分子的总能量和电荷分布所进行的计算结果表明所提出的原子 键电负性均衡模型是可行的 ,可以应用于确定各类生物和有机大分子的总能量和电荷分布 ,给出较EEM和MEEM模型更近于从头计算的结果  相似文献   

4.
原子-键电负性均衡方法(ABEEM)是以密度泛函理论(DFT)和电负性均衡原理为基础发展而来,它明确地考虑了化学键是不引入任何实验数据的带纯理论性和计算的方法.使用统一标准并具有代表性和全面性地选择了200多个模型分子,利用可得到较准确结构的MP2/6-31G*优化结构,心/STO-3G单点计算得到Mulliken重叠布居,再用最小二乘法拟合得到许多主族元素在分子体系中的诸原子(包括单、双和叁键等不同成键状态)和化学键的ABEEM参数.所得到的原子的价态电负性可与已提出的其他电负性标度相比拟,计算CO得到的电荷负端为C(与从头计算的结果相反),结果与实验相符,且原子电荷的正负不完全由原子电负性决定.  相似文献   

5.
利用Matlab软件编写程序, 将基于密度泛函理论和电负性均衡原理发展的原子-键电负性均衡方法σ-π模型(ABEEM σ-π)计算的电荷分布, 特别是键电荷和孤对电子的电荷分布, 用图形表现出来, 对分子的电荷分布给出直观形象的认识, 并以腺嘌呤、腺嘌呤脱氧核苷酸以及丙烯与氯化氢的马氏亲电加成反应为例, 进行应用说明.  相似文献   

6.
原子-键电负性均衡方法中的σπ模型及应用   总被引:8,自引:1,他引:7  
带有双键或共轭双键的化合物可进行加成、氧化和聚合等反应,在有机、生物和制药等领域用途广泛.密度泛函理论下的电负性均衡方法在研讨分子电荷分布和反应性等方面有独特优势[1~4].在电负性均衡方法中,Mortier[1]的电负性均衡方法引人注目,但其未考虑分子中化学键的存在.Ghosh[2]的半经验电负性均衡方法考虑了化学键电荷,但键电荷取值假定太简单,只能处理双原子分子.Yang[3,4]等的原子-键电负性均衡方法同时考虑了分子中原子和化学键的存在,取得令人满意的结果.至今尚无人明确地考虑双键的结构…  相似文献   

7.
应用ABEEM模型计算铁(Ⅱ)配合物的电荷分布   总被引:1,自引:1,他引:0  
以密度泛函理论和电负性均衡原理为基础,在原子-键电负性均衡模型中,利用最小二乘法,并结合自编程序,拟合确定了氢、碳、氮、硫以及铁(Ⅱ)等各种类型的原子及相关化学键区域的参数.利用上述参数计算了一些铁(Ⅱ)配合物的电荷分布,计算结果可以和从头算结果很好地相关联.  相似文献   

8.
以密度泛函理论表述的电负性定义及其均衡原理为基础,提出了一个修正电负性均衡方法(MEEM),可直接用于计算各类分子的总能量和原子电荷分布。通过对3个较大环状分子18-crown-6,24-crown-8和24-cryptand的实际计算,发现其计算结果与从头计算结果接近。  相似文献   

9.
以密度泛函理论和电负性均衡原理为基础,应用修正的电负性均衡方法,并自编程序,用最小二乘法,拟合确定了H,C,O,N,F和Cl以及S等各种类型原子的价态电负性、价态硬度和能量的相关参数;从电负性均衡原理的观点,利用这些参数确定了一些青霉素基团的电负性和电荷分布,并进行了讨论.  相似文献   

10.
以密度泛函理论表述的电负性定义其均衡原理为基础,提出了一个修正电负性均衡方法(MEEM),可直接用于计算各类分子的总能量和原子电荷分布,通过对3个较大环状分子18-crown-6,24-crown-8和24-cryptand的实际计算,发现其计算结果与从头计算结果接近。  相似文献   

11.
The atom-bond electronegativity equalization method (ABEEM), based on the equalization of the “effective electronegativity” of an atom or a bond in a molecule, allows the direct calculation of the charge distribution and the molecular electronegativity of a large molecule. We now demonstrate how the another important quantity, the total molecular energy, can be computed directly and rapidly. It is shown that, based on the ABEEM, the corresponding ab initio values of the total molecular energy can be reproduced with very satisfactory accuracy. In addition, it has been found that in the expression of the energy functional E[ρ] of the ABEEM, the charge-dependent term C correlates quite well with the total molecular bonding energy.  相似文献   

12.
Atoms characterized by nonequivalent electronegativities form chemical bonds by exchanging electrical charge. The fraction of charge exchanged is dictated by the electronegativity differences among the system atoms. In the electronegativity equalization method, the charge distribution is estimated by forcing the system to relax to a common chemical potential, which corresponds to its configuration of energy minimum. By definition, this method cannot be applied to homonuclear bonds. A model is proposed to estimate the charge shared in molecular orbitals of homonuclear molecules. The model expands upon the electronegativity equalization method by adding formalism to describe the spin coupling characteristic of homonuclear bonds. Results are in excellent agreement with other quantum mechanical estimations of the charge distributions. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
氢的电负性值是氢元素性质的重要参数,1932年Pauling犤1~3犦定量确定氢的相对电负性值等于2.1,1961年Allred犤4,5犦用更准确的实验数据对Paul-ing电负性标度进行了修正,氢的电负性值被确定为2.2,目前这两个数值都在采用。元素的电负性值是与元素的性质紧密相关的,一个合适的电负性标度应该至少反映所有重要元素的电负性值,氢的化合物比任何其它元素都多,理应有一个基本的准确电负性值,然而一些电负性标度中却缺乏这样的数据。在Murphy等四人犤6犦最近发表的论文中,对Pauling电负性标度又进行了深入考查与…  相似文献   

14.
Based on the density functional theory and partitioning the molecular electron density ρ (r) into atomic electronic densities and bond electronic densities, the expressions of the total molecular energy and the “effective electronegativity” of an atom or a bond in a molecule are obtained. The atom-bond electronegativity equalization model is then proposed for the direct calculation of the total molecular energy and the charge distribution of large molecules. Practical calculations show that the atom-bond electronegativity equalization model can reproduce the correspondingab initio values of the total molecular energies and charge distributions for a series of large molecules with a very satisfactory accuracy.  相似文献   

15.
We take the contribution of all valence electrons into consideration and propose a new valence electrons equilibration method to calculate the equalized electronegativity including molec-ular electronegativity, group electronegativity, and atomic charge. The ionization potential of alkanes and mono-substituted alkanes, the chemical shift of 1H NMR, and the gas phase proton affinity of aliphatic amines, alcohols, and ethers were estimated. All the expressions have good correlations. Moreover, the Sanderson method and Bratsch method were modified on the basis of the valence electrons equilibration theory. The modified Sanderson method and modified Bratsch method are more effective than their original methods to estimate these properties.  相似文献   

16.
On the basis of a more precise expression of the atomic effective electronegativity deduced from the density functional theory and electronegativity equalization principle, a new scheme for calculating the group electronegativity and the atomic charges in a group is proposed and programed, and various parameters of electronegativity and hardness are given for some common atoms. Through calculation, analysis and comparison of more than one hundred groups, it is shown that the results from this scheme are reasonable and may be extended.  相似文献   

17.
Based on the density functional theory and the atom-bond electronegativity equalization model (ABEEM), a method is proposed to construct the softness matrix and to obtain the electron population normal modes (PNMs) for a closed system. Using this method the information about the bond charge polarization in a molecule can be obtained easily. The test calculation shows that the PNM obtained by this method includes all the modes about the bond charge polarization explicitly. And the bond charge polarization mode characterized by the biggest eigenvalue, which is the softest one of all modes related with chemical bonds, can describe the charge polarization process in a molecule as exquisitely as the corresponding ab initio method.  相似文献   

18.
The electronegativity equalization method (EEM) was developed by Mortier et al. as a semiempirical method based on the density-functional theory. After parameterization, in which EEM parameters A(i), B(i), and adjusting factor kappa are obtained, this approach can be used for calculation of average electronegativity and charge distribution in a molecule. The aim of this work is to perform the EEM parameterization using the Merz-Kollman-Singh (MK) charge distribution scheme obtained from B3LYP/6-31G* and HF/6-31G* calculations. To achieve this goal, we selected a set of 380 organic molecules from the Cambridge Structural Database (CSD) and used the methodology, which was recently successfully applied to EEM parameterization to calculate the HF/STO-3G Mulliken charges on large sets of molecules. In the case of B3LYP/6-31G* MK charges, we have improved the EEM parameters for already parameterized elements, specifically C, H, N, O, and F. Moreover, EEM parameters for S, Br, Cl, and Zn, which have not as yet been parameterized for this level of theory and basis set, we also developed. In the case of HF/6-31G* MK charges, we have developed the EEM parameters for C, H, N, O, S, Br, Cl, F, and Zn that have not been parameterized for this level of theory and basis set so far. The obtained EEM parameters were verified by a previously developed validation procedure and used for the charge calculation on a different set of 116 organic molecules from the CSD. The calculated EEM charges are in a very good agreement with the quantum mechanically obtained ab initio charges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号