首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Cadmium sulfide/polystyrene (CdS/PS) hybrid particles were synthesized and their physical characteristics including electrorheology were examined. Monodisperse CdS/PS nanocomposite particles with diameters of 2 μm were obtained via dispersion polymerization. To form cadmium sulfide nanoparticles onto the PS surface, 2-(dimethylamino)ethyl methacrylate was used as a functional monomer for coordinating with Cd2+ ions. Finally, cadmium sulfide nanoparticles with size < 10 nm were formed with the release of S2− ions from thioacetamide. The morphology of the as-prepared CdS/PS nanocomposite particles clearly showed that the CdS particles are present on the surface of the PS. The optical properties were also studied. In addition, their electrorheological characteristics were confirmed by using optical microscopy with applied electrical field. Recently, dielectric properties of CdS nanoparticles were already reported; however, electrorheological characteristics of CdS/PS nanocomposite particles were investigated for the first time.  相似文献   

2.
The nucleation of CdS particles on the surface of polystyrene supports from aqueous ammonia—thiourea solutions was studied. The increment in the mass of nanoparticles on the support with time was determined. The degree of binding of Cd(II) ions into sulfide on the surface (support area 14 cm2, solution volume 3.7 cm3) after 3 h at 50°C was 2.2% of their total amount. The results agreed well with those of model calculations for spherical (for small times) and ellipsoid particles at a constant surface concentration. The nanoparticles that formed in solution were not involved in the formation of surface films on polystyrene supports. The photoluminescent properties of the obtained films were studied.  相似文献   

3.
The composition and electronic structure of cadmium sulfide (CdS) nanoparticles formed by the Langmuir–Blodgett (LB) technique on clean silicon wafers and the surface of vertically aligned carbon nanotube (CNT) arrays are studied by X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The samples were annealed in a vacuum at 175 °C and 225 °C to remove the organic matrix of the LB film. From the analysis of the XPS data the increased concentration of sulfate groups on the surface of CdS nanoparticles formed on CNTs and the electron density transfer from CdS to CNTs are determined. An increase in the LB film annealing temperature causes an increase in the degree of crystallinity and the CdS crystallite size and a decrease in the photoluminescence intensity of a CdS–CNT hybrid.  相似文献   

4.
A novel one-step electrochemical method for the preparation of capping-free cadmium sulfide nanoparticles is described. With gold as the working electrode, capping-free CdS nanoparticles are synthesized very conveniently at 70°C in the ethylene glycol (EG) solution of elementary sulfur, cadmium salt, and supporting electrolyte at −0.1 V. By carefully selecting the reductive potential, elementary sulfur is reduced while the reduction of Cd2+ is blocked by the formation of a sulfur monolayer on the gold electrode surface. The produced S2− reacts with cadmium cations in the solution to produce CdS. In this method, magnetic stirring can effectively prevent the deposition of CdS on the electrode surface. XRD analysis indicates that the product is pure cubic-phase CdS. The size and morphology of the particles are studied by TEM. Published in Russian in Elektrokhimiya, 2006, Vol. 42, No. 9, pp. 1060–1064. The text was submitted by the authors in English.  相似文献   

5.
Cadmium sulfide (CdS) nanoparticles have been obtained by chemical precipitation onto the surface of single-crystalline silicon from an aqueous solution of ammonia, cadmium chloride (CdCl2), and thiourea, as well as from water–DMSO and water–DMF mixtures with the same concentrations of the reagents. According to data of atomic force microscopy, the samples obtained from the aqueous solution consist of individual nanoparticles and agglomerates thereof with sizes of no larger than 1 µm. Materials obtained from the water–organic mixtures are distinguished by the aggregation of CdS nanoparticles into threadlike chains. The length of the formed curved chains and the size of CdS nanoparticles composing them depend on the nature and amount of an organic component of a mixture. Atomic force microscopy, transmission electron microscopy, and photoluminescence spectroscopy data have shown that the average size of CdS nanoparticles is 2–2.5 nm depending on solvent composition.  相似文献   

6.
用新发展的超瑞利散射(HRS)技术(一种非相干的方法)研究了表面富镉的CdS纳米粒子的二阶非线性光学性质。结果表明每个纳米粒子的二次非线性极化率β值在10^-26esu量级,这是目前报导的具有最大β值的溶液物种之列。探讨了CdS纳米粒子产生二阶非线性的机制。认为纳米粒子大的比表面及表面缺陷结构对CdS纳米粒子的二阶光学非线性有很大影响。另外,双光子吸收诱导的共振增强作用亦可能贡献CdS纳米粒子的HRS信号,这种双光子共振吸收被其双光子荧光谱所证实。  相似文献   

7.
Method of chemical precipitation from aqueous solutions was used to cover the surface of polycrystalline ZnO nanotubes with a nanostructured CdS layer. The thus synthesized CdS/ZnO composite material was studied by the methods of X-ray diffraction analysis, electron microscopy, and optical spectroscopy. The fundamental time-related aspects of the process of CdS formation on the ZnO surface were examined. It was found that the amount of deposited CdS nanoparticles is independent of the deposition duration. The morphological specific features of ZnO nanotubes are preserved upon a prolonged keeping of ZnO in solution. The photocatalytic activity of CdS/ZnO under visible and UV light was examined in the reaction of hydroquinone oxidation. A possible mechanism of how the CdS/ZnO composite is formed in an aqueous solution in the course of growth of a layer constituted by CdS nanoparticles on the surface of ZnO nanotubes is suggested on the basis of the experimental data. It is demonstrated that the chemical-precipitation method can be used to obtain surface-active composite materials that are photoactive in the visible spectral range.  相似文献   

8.
Semiconductor nanoparticle/polystyrene latex composite materials   总被引:1,自引:0,他引:1  
Cadmium sulfide and cadmium selenide/cadmium sulfide core/shell nanoparticles stabilized with poly(cysteine acrylamide) have been bound to polystyrene (PS) latexes by three methods. First, anionic 5 nm diameter CdS particles were electrostatically attached to 130 nm surfactant-free cationic PS latexes to form stable dispersions when the amount of CdS particles was less than 10% of the amount required to form a monolayer on the surface of the PS particles or when the amount of CdS particles exceeded the amount required to form a monolayer on the PS particles. Transmission electron microscopy (TEM) showed nanoparticles on the surface of the latex particles. Fluorescence spectra showed unchanged emission from the nanoparticles. Second, anionic, surfactant-free PS latexes were synthesized in the presence of CdS and CdSe/CdS nanoparticles. TEM showed monodisperse latex particles with trapped nanoparticles. Third, surfactant-stabilized latexes were synthesized by copolymerization of styrene with vinylbenzyl(trimethyl)ammonium chloride electrostatically bound to the CdSe/CdS nanoparticle surface. Brownian motion of the submicroscopic composite particles in water was detected by fluorescence microscopy.  相似文献   

9.
CdS/TiO2复合纳米微粒的原位合成及性质研究   总被引:19,自引:2,他引:17  
采用一种新方法,在TiO2表面原位合成CdS纳米微粒,并用红外光谱跟踪了CdS/TiO2复合纳米微粒的形成过程.紫外吸收光谱研究表明TiO2对CdS纳米微粒的形成有很好的稳定作用,荧光光谱研究结果表明,这种纳米异质结构有着良好的电荷分离.  相似文献   

10.
Europium ions were chemically bound to CdS nanoparticles surface by diethylenetri-aminepentaacetate (DTPA, 1) in a two-step synthetic route. First 1 was applied to chelate with cadmium on the surface of cadmium-rich CdS nanoparticles and act as a capping agent. Further, the purified 1-capped particles were used to bind with Eu~3 . The purified and redispersed particles were characterized by photoluminescence spectroscopy, TEM and SEM. It was observed that Eu~3 on the nanoparticle surface significantly increased the band gap emission and decreased the surface emission intensity of the CdS nanoparticles.  相似文献   

11.
CdS nanoparticles, prepared in reverse micellar system, were immobilized onto thiol-modified aluminosilicate particles (ASSH) by a simple operation: addition of ASSH in the micellar solution and mild stirring. The resulting CdS nanoparticles-aluminosilicate composites (ASCdS) were used as photocatalysts for H2 generation from 2-propanol aqueous solution. The chemical properties of the aluminosilicate, such as affinity for water and other reactants, were found to affect the photocatalytic property of the CdS nanoparticles immobilized. Zeolite particles, having affinity for water and 2-propanol, gave a good ASCdS photocatalyst with respect to H2 generation.  相似文献   

12.
Nanocomposites of carbon nanotubes (CNTs) with Sn2Sb alloy nanoparticles were prepared by KBH4 reduction of SnCl2 and SbCl3 precursors in the presence of CNTs. SEM and TEM examinations showed that most of the Sn–Sb alloy nanoparticles were present in high dispersion in the CNT web, while others were deposited directly on the outside surface of the carbon nanotubes. Constant current charge and discharge tests using the nanocomposites as Li+ storage compounds showed higher specific capacities than pristine CNTs and better cyclability than unsupported Sn2Sb particles. The first cycle de-lithiation capacity of 580 mAh/g from a CNT–56 wt%Sn2Sb nanocomposite was nevertheless reduced to 372 mAh/g after 80 deep charge and discharge cycles. The uniform dispersion of Sn2Sb alloy in the CNT web and on the surface of CNTs have substantially improved the usability of the Sn2Sb particles to the extent that the nanocomposites of CNTs and Sn2Sb may be considered as a candidate anode material for Li-ion batteries.  相似文献   

13.
The presented paper describes a novel procedure for the preparation of inorganic nanoparticles and their surface functionalization in situ dedicated to an application in technical polymers. Using an inverse emulsion technique and amphiphilic block or statistical copolymers as stabilizers, a broad variety of nanoparticles such as ZnO, CdS, MgCO3, Ni, or Cu can be prepared. The amphiphilic polymers serve not only as surface active compounds in the emulsion but also to hydrophobize the inorganic particles as they remain adsorbed on the surface after the precipitation. As a consequence of the high degree of surface coverage by polymer chains, organic solvents are able to redisperse these particles in the aggregate free manner. The utilization of the block copolymers instead of statistical copolymers resulted in the formation of the particles, which were larger in size and possessed a much broader size distribution. The chemical nature of the adsorbed polymer layer on the particle surface is crucial to the preparation of polymer nanocomposites. The primary goal of this contribution is to demonstrate the universality of such a one-pot synthetic procedure, which was found to be relevant for industrial use.  相似文献   

14.
Cadmium sulfide nanoparticles with average size of ≈16 nm have been synthesized using chemical precipitation reaction of CdCl2 and Na2S in the presence of nonionic surfactant stabilized reverse emulsions. Sorbian monolaurate (Span 20) is used for the stabilization of emulsions. The influence of Span 20 on controlling the size and properties of CdS nanoparticles were studied. The obtained CdS nanoparticles were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Energy-dispersive x-ray (EDX), and X-ray diffraction (XRD). The optical properties of CdS nanoparticles are investigated systematically by UV-visible absorption spectroscopy. The blue shift in the absorption region and increase in the bandgap to the larger value (2.77 eV) are attributed to the nanosize of the obtained particles.  相似文献   

15.
硬脂酸镉在纳米尺寸CdS微粒制备中的作用(英文)   总被引:1,自引:0,他引:1  
采用CdS和CdSt2 同阳离子共沉淀的方法制备了一种新型的纳米尺寸CdS微粒具有“三明治”结构 ,并且是尺寸可控的 ,在制备过程中硬脂酸镉起着重要作用。这种“三明治”CdS纳米微粒易于分离并不易被空气所氧化。对自组装“三明治”CdS纳米微粒的形成机理进行了讨论。  相似文献   

16.
首次报道在130oC低温条件下,以乙酸镉和葡萄糖分别作为镉源和碳源,硫脲同时充当硫源和葡萄糖水热碳化的催化剂,通过一步水热碳化法制备了碳包覆的CdS (CdS@C)纳米材料。与相同条件下制备的纯CdS相比,合成的CdS@C粒子具有更小的粒子尺寸、良好的分散性以及更均匀的粒子分布。而且,葡萄糖在水热碳化过程中能够促使CdS优先形成立方晶相。此外,粒子表面的碳物种能拓宽CdS的可见光吸收范围,稍微降低它的带隙能,减缓CdS的光生电子-空穴对的复合和光腐蚀。因此,它能改善CdS在可见光辐射下催化氧化降解甲基橙的活性和稳定性。  相似文献   

17.
CdS nanoparticles were deposited on a highly stable, two‐dimensional (2D) covalent organic framework (COF) matrix and the hybrid was tested for photocatalytic hydrogen production. The efficiency of CdS‐COF hybrid was investigated by varying the COF content. On the introduction of just 1 wt % of COF, a dramatic tenfold increase in the overall photocatalytic activity of the hybrid was observed. Among the various hybrids synthesized, that with 10 wt % COF, named CdS‐COF (90:10), was found to exhibit a steep H2 production amounting to 3678 μmol h?1 g?1, which is significantly higher than that of bulk CdS particles (124 μmol h?1 g?1). The presence of a π‐conjugated backbone, high surface area, and occurrence of abundant 2D hetero‐interface highlight the usage of COF as an effective support for stabilizing the generated photoelectrons, thereby resulting in an efficient and high photocatalytic activity.  相似文献   

18.
Silica hydrogels and planar substrates were patterned with CdS nanoparticles using a photolithographic method based on the photo dissociation of thiols and cadmium-thiolate complexes. Silica hydrogels were prepared via a standard base-catalyzed route. The solvent was exchanged with an aqueous solution of CdSO4 and 2-mercaptoethanol, and the samples were then exposed to a focused ultraviolet beam. Planar substrates were patterned by illuminating a precursor solution spin coated on the substrates. CdS nanoparticles formed in the illuminated spots, and had a diameter below about 2 nm. The diameter of the spots illuminated by the UV beam could be varied from a few hundred to a few μm, on both hydrogels and planar substrates. Samples were characterized with transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and optical absorption, photoluminescence and Raman spectroscopies. All these techniques confirmed the chemical identity of the CdS nanoparticles. To investigate the mechanism of nanoparticle formation, we took absorption spectra of the precursor solution as a function of irradiation time. In unirradiated solutions, we noticed a maximum at 250 nm, characteristic of Cd-thiolate complexes. The absorption at 250 nm decreased with increasing irradiation time. A new band appeared at 265 nm for exposures around 5 min, and that band shifted to 290 nm in samples exposed for 10 min. A yellow precipitate formed after about 30 min. XRD showed that the precipitate was cubic CdS, with a mean particle size of 1.4 nm. We attribute formation of CdS to the photodissociation of the thiols and of the Cd-thiolates. UV irradiation of these precursors yields a series of species that can react with Cd2+, such as RS·, S2− and H2S. Small CdS nanoparticles form in the initial stages of illumination, and present absorption bands in the 265–290 nm region. These CdS aggregates grow, coalesce and precipitate for longer irradiation times.  相似文献   

19.
The interaction between positively charged porphyrin TMPyP(4) (tetrakis‐(1‐methyl‐4‐pyridiniyl) porphyrin) and negatively charged surface of colloidal CdS nanoparticles has been studied by absorption spectrum, fluorescence spectroscopy, and time‐correlated single‐photon‐counting methods. Addition of CdS colloid to a TMPyP(4) solution leads to TMPyP(4) adsorption onto the surface of CdS colloid with an apparent association constant of 4643 L/mol. This adsorption results in distinct changes in absorption spectrum of TMPyP (4) and the quenching of its′ fluorescence, but the biexponential fluorescence decay changes hardly. Nearly 90% of the fluorescence of 5 × 10?6 mol/L TMPyP(4) can be quenched with 1.5 × 10?4 mol/L CdS colloid. These spectral changes are attributed to the formation of a certain form complex TMPyP(4)‐CdS.  相似文献   

20.
生物还原-化学沉淀耦合反应制备纳米硫化镉和硫化铅   总被引:1,自引:0,他引:1  
本文应用生物还原-化学沉淀耦合反应成功制备了高纯纳米硫化镉和硫化铅,EDTA(Ethylene Diamine Tetraacetic Acid)的加入为高浓度金属离子条件下的生物制备提供了保证。研究表明,在0.012 5~0.037 5 mol·L-1的较低浓度范围内镉浓度增加促进了硫酸根的生物还原和硫化镉的生物制备;但0.05 mol·L-1的高浓度镉则抑制了SRB的生物活性并降低了硫化镉的生成量。随着厌氧还原反应的进行,微溶的白色硫酸铅沉淀逐渐转化为不溶的黑色硫化铅沉淀,导致纳米硫化铅的生成。硫化镉微球的一次粒子约为10~20 nm,二次粒子平均粒径400 nm,PAM(polyacrylamide)的加入使得二次粒子分布更为均匀。硫化铅微粒二次粒子约为40 nm,PAM的加入没有改变粒子大小,但使得粒子形态由球形变为方形。生物还原-化学沉淀耦合反应对于金属硫化物的制备具有一定的普适性,因而显示出良好的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号